Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics

化学 溶剂化 分子动力学 电解质 化学物理 从头算 工作(物理) 锂(药物) 计算化学 热力学 离子 物理化学 有机化学 物理 内分泌学 医学 电极
作者
Feng Wang,Jun Cheng
出处
期刊:Chinese Journal of Structural Chemistry [Elsevier BV]
卷期号:42 (9): 100061-100061 被引量:9
标识
DOI:10.1016/j.cjsc.2023.100061
摘要

Glyme-based electrolytes are of great interest for rechargeable lithium metal batteries due to their high stability, low vapor pressure, and non-flammability. Understanding the solvation structures of these electrolytes at the atomic level will facilitate the design of new electrolytes with novel properties. Recently, classical molecular dynamics (CMD) and ab initio molecular dynamics (AIMD) have been applied to investigate electrolytes with complex solvation structures. On one hand, CMD may not provide reliable results as it requires complex parameterization to ensure the accuracy of the classical force field. On the other hand, the time scale of AIMD is limited by the high cost of ab initio calculations, which causes that solvation structures from AIMD simulations depend on the initial configurations. In order to solve the dilemma, machine learning method is applied to accelerate AIMD, and its time scale can be extended dramatically. In this work, we present a computational study on the solvation structures of triglyme (G3) based electrolytes by using machine learning molecular dynamics (MLMD). Firstly, we investigate the effects of density functionals on the accuracy of machine learning potential (MLP), and find that PBE-D3 shows better accuracy compared to BLYP-D3. Then, the densities of electrolytes with different concentration of LiTFSI are computed with MLMD, which shows good agreement with experiments. By analyzing the solvation structures of 1 ns MLMD trajectories, we found that Li+ prefers to coordinate with a G3 and a TFSI− in equimolar electrolytes. Our work demonstrates the significance of long-time scale MLMD simulations for clarifying the chemistry of non-ideal electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
克偃统统完成签到 ,获得积分10
刚刚
刚刚
小宁同学发布了新的文献求助10
刚刚
1秒前
uikymh完成签到 ,获得积分0
1秒前
求助发布了新的文献求助10
2秒前
2秒前
2秒前
向阳完成签到,获得积分10
3秒前
超人爱吃菠菜完成签到,获得积分10
3秒前
所所应助悲凉的半兰采纳,获得10
4秒前
呆萌海亦发布了新的文献求助10
5秒前
5秒前
zzazz完成签到,获得积分10
5秒前
木风2023发布了新的文献求助10
5秒前
6秒前
一杯月光发布了新的文献求助10
6秒前
情怀应助难过的谷芹采纳,获得10
7秒前
shangqinwang发布了新的文献求助10
8秒前
小袁不圆发布了新的文献求助30
9秒前
春天的大树应助康康采纳,获得10
11秒前
11秒前
12秒前
whytcs完成签到,获得积分10
13秒前
科研通AI5应助贵州洋芋粑采纳,获得10
13秒前
大王完成签到 ,获得积分10
14秒前
搜集达人应助hope采纳,获得10
14秒前
ordin发布了新的文献求助10
14秒前
星辰大海应助王辰宁采纳,获得10
15秒前
15秒前
卡卡卡发布了新的文献求助10
16秒前
lottie完成签到 ,获得积分10
17秒前
17秒前
18秒前
21秒前
白茶完成签到 ,获得积分10
21秒前
lottie关注了科研通微信公众号
21秒前
24秒前
24秒前
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117104
求助须知:如何正确求助?哪些是违规求助? 3655656
关于积分的说明 11575578
捐赠科研通 3358671
什么是DOI,文献DOI怎么找? 1845166
邀请新用户注册赠送积分活动 910636
科研通“疑难数据库(出版商)”最低求助积分说明 827016