清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrated single-nucleus transcriptomic and metabolomic insights into bud-to-leaf development and metabolite synthesis in tea plant

生物 代谢组学 代谢物 转录组 植物发育 植物 生物信息学 生物化学 基因 基因表达
作者
Xuecheng Zhao,Xiaoying Xu,Ning Chi,Yiming Liu,Xinxin Zhou,Ji-Qiang Jin,Chun-Lei Ma,Jian‐Qiang Ma,Wei Chen,Ming-Zhe Yao,Liang Chen
出处
期刊:Horticulture research [Springer Nature]
标识
DOI:10.1093/hr/uhaf281
摘要

Abstract The tea plant is an important non-alcoholic beverage crop known for its abundant secondary metabolites, particularly in buds and leaves. However, the coordinated regulation of bud-to-leaf development and metabolism remains poorly understood. Here, we applied single-nucleus RNA sequencing (snRNA-Seq), bulk RNA sequencing (RNA-Seq), and metabolomics to comprehensively profile the developmental trajectory and metabolic characteristics of tea plant buds and leaves. The snRNA-Seq analysis revealed 17 cell clusters and 8 cell types in buds and leaves, respectively. Notably, the proportion of palisade mesophyll (PM) cells increased progressively during development, while proliferating cells (PC) decreased. Interestingly, key enzymes in the flavonoid biosynthetic pathway were specifically localized to PM cells. Metabolomic analyses demonstrated dynamic accumulation patterns of various metabolites, including phytohormones, flavonoids, and amino acids, as the buds transitioned to mature leaves. Using multi-omics profiling, we identified CsmiRNA396b, CsUGT94P1, CsTCP3, and CsTCP14 as critical regulatory components. Enzyme activity assays confirmed that CsUGT94P1 catalyzes the conversion of flavonols into flavonols-glycosides in vitro. Furthermore, CsmiRNA396b was found to regulate leaf development by inhibiting CsGRF3 expression, while CsTCP3 and CsTCP14 played antagonistic roles in leaf development and flavonoid biosynthesis. Our findings provide novel insights into the regulatory mechanisms underlying bud-to-leaf development and metabolite production in tea plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
7秒前
张晟源发布了新的文献求助30
14秒前
14秒前
16秒前
敏敏9813发布了新的文献求助10
18秒前
TXZ06完成签到,获得积分10
27秒前
41秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
科研通AI6应助宝宝爱洗脚采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
Zoe发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
Zoe完成签到,获得积分10
4分钟前
4分钟前
5分钟前
虚幻念寒完成签到 ,获得积分10
5分钟前
卢莹完成签到,获得积分10
5分钟前
木乙完成签到 ,获得积分10
5分钟前
大医仁心完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
脑洞疼应助Jonathan采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605