医学
磁共振弥散成像
扩散
放射科
磁共振成像
物理
人工智能
计算机科学
热力学
作者
Dong Hwan Kim,Bohyun Kim,Hyun-Soo Lee,Thomas Benkert,Hokun Kim,Joon‐Il Choi,Soon Nam Oh,Sung Eun Rha
标识
DOI:10.1097/rli.0000000000000988
摘要
Deep learning-reconstructed diffusion-weighted imaging (DL-DWI) is an emerging promising time-efficient method for liver evaluation, but analyses regarding different motion compensation strategies are lacking. This study evaluated the qualitative and quantitative features, sensitivity for focal lesion detection, and scan time of free-breathing (FB) DL-DWI and respiratory-triggered (RT) DL-DWI compared with RT conventional DWI (C-DWI) in the liver and a phantom.
科研通智能强力驱动
Strongly Powered by AbleSci AI