Tandem SERS and MS/MS Profiling of Plasma Extracellular Vesicles for Early Ovarian Cancer Biomarker Discovery

生物标志物发现 代谢组学 多发性硬化 表面增强拉曼光谱 化学 细胞外小泡 拉曼光谱 色谱法 蛋白质组学 生物 生物化学 免疫学 拉曼散射 细胞生物学 物理 光学 基因
作者
Lorena Veliz,Tyler T. Cooper,Isabelle Grenier‐Pleau,Sheela A. Abraham,Janice Gomes,Stephen Pasternak,Bianca Dauber,Lynne‐Marie Postovit,Gilles Lajoie,François Lagugné‐Labarthet
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (1): 272-282 被引量:8
标识
DOI:10.1021/acssensors.3c01908
摘要

Extracellular vesicles (EVs) are vectors of biomolecular cargo that play essential roles in intercellular communication across a range of cells. Protein, lipid, and nucleic acid cargo harbored within EVs may serve as biomarkers at all stages of disease; however, the choice of methodology may challenge the specificity and reproducibility of discovery. To address these challenges, the integration of rigorous EV purification methods, cutting-edge spectroscopic technologies, and data analysis are critical to uncover diagnostic signatures of disease. Herein, we demonstrate an EV isolation and analysis pipeline using surface-enhanced Raman spectroscopy (SERS) and mass spectrometry (MS) techniques on plasma samples obtained from umbilical cord blood, healthy donor (HD) plasma, and plasma from women with early stage high-grade serous carcinoma (HGSC). Plasma EVs were purified by size exclusion chromatography and analyzed by surface-enhanced Raman spectroscopy (SERS), mass spectrometry (MS), and atomic force microscopy. After determining the fraction of highest EV purity, SERS and MS were used to characterize EVs from HDs, pooled donors with noncancerous gynecological ailments (n = 6), and donors with early stage [FIGO (I/II)] with HGSC. SERS spectra were subjected to different machine learning algorithms such as PCA, logistic regression, support vector machine, naïve Bayes, random forest, neural network, and k nearest neighbors to differentiate healthy, benign, and HGSC EVs. Collectively, we demonstrate a reproducible workflow with the potential to serve as a diagnostic platform for HGSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大意的蛋挞完成签到 ,获得积分10
1秒前
蓝色发布了新的文献求助10
3秒前
科研通AI5应助rpe采纳,获得10
3秒前
Grace0610发布了新的文献求助10
6秒前
章铭-111发布了新的文献求助10
6秒前
Joy完成签到,获得积分10
7秒前
RDK完成签到,获得积分10
7秒前
8秒前
大个应助欢喜采纳,获得30
8秒前
积极玲完成签到,获得积分20
8秒前
9秒前
小白完成签到 ,获得积分10
9秒前
义气安露发布了新的文献求助10
13秒前
Joker完成签到,获得积分10
14秒前
蓝色发布了新的文献求助10
14秒前
思源应助漫步海滩采纳,获得10
17秒前
冷山完成签到 ,获得积分20
17秒前
17秒前
风格完成签到,获得积分10
20秒前
小叔完成签到 ,获得积分10
22秒前
23秒前
胡图图完成签到 ,获得积分10
26秒前
27秒前
nadia完成签到,获得积分10
27秒前
汉堡包应助铭名洺采纳,获得20
28秒前
28秒前
30秒前
今后应助wuxunxun2015采纳,获得10
31秒前
蓝色发布了新的文献求助10
32秒前
ho完成签到 ,获得积分10
32秒前
漫步海滩发布了新的文献求助10
33秒前
35秒前
37秒前
JuJu完成签到,获得积分10
38秒前
sgt发布了新的文献求助10
39秒前
tunacan完成签到 ,获得积分10
40秒前
蓝色发布了新的文献求助10
41秒前
rpe发布了新的文献求助10
42秒前
Alanni完成签到 ,获得积分10
43秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799095
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321650
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445