Data-driven and knowledge-guided denoising diffusion model for flood forecasting

计算机科学 离群值 数据挖掘 大洪水 扩散图 一般化 机器学习 领域(数学) 人工智能 初始化 数学 降维 纯数学 程序设计语言 非线性降维 哲学 数学分析 神学
作者
Pingping Shao,Jun Feng,Jiamin Lu,Pengcheng Zhang,Chenxin Zou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 122908-122908 被引量:14
标识
DOI:10.1016/j.eswa.2023.122908
摘要

Data-driven models have been successfully applied in hydrological fields such as flood forecasting. However, limitations to the solutions to scientific problems still exist in this field: data collection is time-consuming and expensive, the quality of the collected data cannot be ensured, and noise or outliers may exist in the dataset, resulting in incorrect results. Moreover, data-driven models are trained only from available datasets and do not involve scientific principles or laws during the model-training process. This may lead to the prediction of specific scientific problems that do not conform to physical laws. Therefore, we propose a data-driven and knowledge-guided denoising diffusion (DK-Diffusion) model. First, for the data preprocessing stage, a coupled heterogeneous mapping tensor decomposition complementary algorithm is proposed that integrates the spatial information of a watershed, optimizes the initialization conditions of the model, reduces the potential correlation loss of data caused by tensor decomposition, and better optimizes the initial conditions of the model. We introduced an attention mechanism into the denoising diffusion probabilistic model (DDPM) to better capture medium- and long-term correlations during flood processes. Most importantly, under the guidance of flood physics theory, we designed the loss function of the proposed model to ensure that the output prediction results were more consistent with the laws of flood physics. This is an innovative improvement with greater practical engineering value because it optimizes the boundary conditions of the model, giving it better generalization ability and reducing its dependence on data. Through comparative experiments on datasets from the Qijiang and Tunxi basins in China, compared with the popular flood forecasting model AGCLSTM, the root mean square error (RMSE) was reduced by 20.3–27.7%, and the mean absolute percentage error (MAPE) was reduced by 4.2–4.3%. Compared with the conditional score-based diffusion models for probabilistic time series imputation (CSDI), the average RMSE and mean sum of continuous ranked probability score CRPSsum were reduced by 6.3–10.6% and 6.1–6.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
垃圾筐发布了新的文献求助10
刚刚
dicpaccn发布了新的文献求助20
刚刚
ebgjaghg发布了新的文献求助10
刚刚
1秒前
张晓娜发布了新的文献求助10
1秒前
2秒前
3秒前
卷毛君完成签到,获得积分10
3秒前
Jasper应助123采纳,获得10
4秒前
4秒前
ardejiang发布了新的文献求助10
5秒前
吧啦吧啦吧啦完成签到,获得积分10
5秒前
FashionBoy应助zzz采纳,获得10
5秒前
5秒前
Kleivin完成签到,获得积分10
5秒前
yangyangandrong完成签到,获得积分10
6秒前
杨佳宁发布了新的文献求助10
6秒前
PURE完成签到,获得积分10
6秒前
蘑菇完成签到,获得积分10
7秒前
AliceDu完成签到 ,获得积分10
7秒前
JustinX完成签到 ,获得积分10
7秒前
vfjvdf发布了新的文献求助10
7秒前
Chill发布了新的文献求助10
8秒前
11秒前
共享精神应助追寻的续采纳,获得10
11秒前
浩二完成签到,获得积分10
11秒前
英勇幻姬发布了新的文献求助10
11秒前
小欧文发布了新的文献求助10
12秒前
13秒前
14秒前
小玉米完成签到 ,获得积分10
14秒前
14秒前
充电宝应助Xiaolu采纳,获得10
15秒前
浩二发布了新的文献求助30
15秒前
英勇幻姬完成签到,获得积分10
17秒前
17秒前
Henry发布了新的文献求助20
17秒前
faith发布了新的文献求助20
17秒前
le完成签到 ,获得积分20
17秒前
Hunter完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Absent Here 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
Die neue Frauenbewegung in Deutschland. Abschied vom kleinen Unterschied. Eine Quellensammlung 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4347751
求助须知:如何正确求助?哪些是违规求助? 3853822
关于积分的说明 12028741
捐赠科研通 3495576
什么是DOI,文献DOI怎么找? 1917953
邀请新用户注册赠送积分活动 960764
科研通“疑难数据库(出版商)”最低求助积分说明 860524