A Multitask Dynamic Graph Attention Autoencoder for Imbalanced Multilabel Time Series Classification

自编码 计算机科学 相关性(法律) 人工智能 系列(地层学) 图形 机器学习 利用 时间序列 数据挖掘 模式识别(心理学) 理论计算机科学 深度学习 法学 政治学 计算机安全 生物 古生物学
作者
Le Sun,Chenyang Li,Yongjun Ren,Yanchun Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 11829-11842 被引量:6
标识
DOI:10.1109/tnnls.2024.3369064
摘要

Graph learning is widely applied to process various complex data structures (e.g., time series) in different domains. Due to multidimensional observations and the requirement for accurate data representation, time series are usually represented in the form of multilabels. Accurately classifying multilabel time series can provide support for personalized predictions and risk assessments. It requires effectively capturing complex label relevance and overcoming imbalanced label distributions of multilabel time series. However, the existing methods are unable to model label relevance for multilabel time series or fail to fully exploit it. In addition, the existing multilabel classification balancing strategies suffer from limitations, such as disregarding label relevance, information loss, and sampling bias. This article proposes a dynamic graph attention autoencoder-based multitask (DGAAE-MT) learning framework for multilabel time series classification. It can fully and accurately model label relevance for each instance by using a dynamic graph attention-based graph autoencoder to improve multilabel classification accuracy. DGAAE-MT employs a dual-sampling strategy and cooperative training approach to improve the classification accuracy of low-frequency classes while maintaining the classification accuracy of high-frequency and mid-frequency classes. It avoids information loss and sampling bias. DGAAE-MT achieves a mean average precision (mAP) of 0.955 and an F1 score of 0.978 on a mixed medical time series dataset. It outperforms state-of-the-art works in the past two years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Singularity应助17853723535采纳,获得10
3秒前
5秒前
Lucas应助练习者采纳,获得10
5秒前
清晨完成签到,获得积分10
6秒前
10秒前
vadfdfb发布了新的文献求助10
11秒前
12秒前
小脸完成签到,获得积分10
12秒前
12秒前
13秒前
Akim应助TheC采纳,获得10
14秒前
15秒前
阿艺完成签到,获得积分10
15秒前
17秒前
竭缘发布了新的文献求助10
17秒前
17秒前
vadfdfb完成签到,获得积分10
18秒前
18秒前
练习者发布了新的文献求助10
18秒前
19秒前
19秒前
student完成签到,获得积分10
19秒前
伍寒烟完成签到,获得积分10
20秒前
20秒前
对阳光过敏的非洲仔完成签到,获得积分10
20秒前
21秒前
ask完成签到,获得积分10
22秒前
开朗穆发布了新的文献求助10
22秒前
彩色铅笔发布了新的文献求助10
22秒前
安东尼发布了新的文献求助10
23秒前
慕青应助yif采纳,获得10
23秒前
26秒前
27秒前
29秒前
sudaxia100发布了新的文献求助10
29秒前
30秒前
grag发布了新的文献求助10
31秒前
HJJHJH发布了新的文献求助30
32秒前
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797954
求助须知:如何正确求助?哪些是违规求助? 3343409
关于积分的说明 10315984
捐赠科研通 3060189
什么是DOI,文献DOI怎么找? 1679350
邀请新用户注册赠送积分活动 806524
科研通“疑难数据库(出版商)”最低求助积分说明 763201