A Systematic Review on Caries Detection, Classification, and Segmentation from X-Ray Images: Methods, Datasets, Evaluation, and Open Opportunities

人工智能 计算机科学 分割 深度学习 系统回顾 领域(数学) 模态(人机交互) 机器学习 模式识别(心理学) 上下文图像分类 梅德林 图像(数学) 数学 政治学 法学 纯数学
作者
Luiz Guilherme Kasputis Zanini,Izabel Regina Fischer Rubira‐Bullen,Fátima L. S. Nunes
标识
DOI:10.1007/s10278-024-01054-5
摘要

Dental caries occurs from the interaction between oral bacteria and sugars, generating acids that damage teeth over time. The importance of X-ray images for detecting oral problems is undeniable in dentistry. With technological advances, it is feasible to identify these lesions using techniques such as deep learning, machine learning, and image processing. Therefore, the survey and systematization of these methods are essential to determining the main computational approaches for identifying caries in X-ray images. In this systematic review, we investigated the primary computational methods used for classifying, detecting, and segmenting caries in X-ray images. Following the PRISMA methodology, we selected relevant studies and analyzed their methods, strengths, limitations, imaging modalities, evaluation metrics, datasets, and classification techniques. The review encompassed 42 studies retrieved from the Science Direct, IEEExplore, ACM Digital, and PubMed databases from the Computer Science and Health areas. The results indicate that 12% of the included articles utilized public datasets, with deep learning being the predominant approach, accounting for 69% of the studies. The majority of these studies (76%) focused on classifying dental caries, either in binary or multiclass classification. Panoramic imaging was the most commonly used radiographic modality, representing 29% of the cases studied. Overall, our systematic review provides a comprehensive overview of the computational methods employed in identifying caries in radiographic images and highlights trends, patterns, and challenges in this research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lala完成签到,获得积分10
刚刚
传奇3应助wang采纳,获得10
刚刚
2秒前
3秒前
爸爸_爸爸_帮帮我完成签到,获得积分10
3秒前
情怀应助城南徐师傅采纳,获得10
3秒前
科目三应助skaneyp采纳,获得10
4秒前
孙_boss完成签到 ,获得积分10
4秒前
Jeamren完成签到,获得积分10
4秒前
yeye完成签到,获得积分10
5秒前
6秒前
6秒前
H黄完成签到,获得积分10
7秒前
奋斗若雁发布了新的文献求助10
7秒前
8秒前
弥漫完成签到,获得积分20
9秒前
hh发布了新的文献求助10
9秒前
ornot君君完成签到,获得积分20
9秒前
充电宝应助整齐千柳采纳,获得10
10秒前
小聖完成签到 ,获得积分10
11秒前
领导范儿应助qwer采纳,获得10
12秒前
wang发布了新的文献求助10
12秒前
李健的粉丝团团长应助fqf采纳,获得10
12秒前
ornot君君发布了新的文献求助10
12秒前
好运6连完成签到,获得积分10
13秒前
景C完成签到 ,获得积分10
14秒前
yeye发布了新的文献求助10
15秒前
15秒前
16秒前
科研通AI5应助fff采纳,获得20
17秒前
18秒前
梅溪湖的提词器完成签到,获得积分10
20秒前
整齐千柳发布了新的文献求助10
20秒前
张静枝发布了新的文献求助10
20秒前
Liliz完成签到,获得积分10
23秒前
hurh发布了新的文献求助10
23秒前
852应助善意小霸王采纳,获得10
25秒前
25秒前
Alan完成签到,获得积分10
25秒前
月亮发布了新的文献求助10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153572
求助须知:如何正确求助?哪些是违规求助? 4349161
关于积分的说明 13541304
捐赠科研通 4191793
什么是DOI,文献DOI怎么找? 2299174
邀请新用户注册赠送积分活动 1299160
关于科研通互助平台的介绍 1244172