A two-stage network framework for topology optimization incorporating deep learning and physical information

计算机科学 网络拓扑 一般化 拓扑优化 桥(图论) 人工智能 深度学习 卷积(计算机科学) 卷积神经网络 块(置换群论) 数学优化 人工神经网络 拓扑(电路) 机器学习 计算机网络 物理 数学 组合数学 有限元法 热力学 医学 数学分析 几何学 内科学
作者
Dalei Wang,Yun Ning,Xiang Cheng,Airong Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108185-108185 被引量:8
标识
DOI:10.1016/j.engappai.2024.108185
摘要

The advent of deep learning provides a promising opportunity to improve the efficiency of topology optimization. However, existing methods make it difficult to achieve a balance between efficiency, accuracy, and generalization ability. To tackle this challenge, we propose a novel method based on a two-stage network framework. In the network, the partial convolution block and shifted windows attention mechanism are integrated to improve the model performance. In the first stage, a convolutional neural network-based model trained with a novel-designed loss function is employed to achieve real-time prediction of suboptimal structures. In the second stage, transfer learning is introduced to inherit the output of the first stage. Subsequently, the second stage optimizes the suboptimal structures to get the final optimal structures in a physical information-driven way. On the 2000 dataset, the two-stage method achieves an average compliance error of −1.45%, and 95.5% of the optimal structures perform better than that obtained by the traditional method and strictly meet volume constraints while eliminating structural disconnections. Finally, the proposed method is applied to a real-world engineering application for the first time, and the design of bridge pylons is given as an example. The results show that the proposed method is a promising exploration of topology optimization based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wgy完成签到,获得积分10
2秒前
victory发布了新的文献求助10
2秒前
3秒前
米酒汤圆发布了新的文献求助10
3秒前
7890733发布了新的文献求助10
4秒前
4秒前
哈哈发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
宇儿发布了新的文献求助10
7秒前
又又发布了新的文献求助10
8秒前
忧郁芒果发布了新的文献求助30
10秒前
思源应助红色蒲公英采纳,获得10
11秒前
lina完成签到,获得积分10
12秒前
睿rrrr发布了新的文献求助10
12秒前
13秒前
13秒前
木落归本完成签到 ,获得积分10
13秒前
orixero应助yizhiGao采纳,获得10
13秒前
王大完成签到,获得积分10
15秒前
lina发布了新的文献求助10
16秒前
17秒前
Hello应助DreamMaker采纳,获得10
18秒前
畅快城发布了新的文献求助10
19秒前
完美世界应助哈哈鹿采纳,获得30
20秒前
澄桦发布了新的文献求助10
21秒前
乐乐应助梅梅美采纳,获得10
21秒前
馆长应助11采纳,获得20
21秒前
21秒前
晨晨完成签到,获得积分10
23秒前
23秒前
敢问阁下是何人完成签到,获得积分10
23秒前
24秒前
怕孤单的雪萍完成签到,获得积分10
25秒前
LLSSLL发布了新的文献求助10
25秒前
杨柳依依完成签到,获得积分10
26秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4467270
求助须知:如何正确求助?哪些是违规求助? 3928664
关于积分的说明 12190689
捐赠科研通 3581996
什么是DOI,文献DOI怎么找? 1968478
邀请新用户注册赠送积分活动 1006855
科研通“疑难数据库(出版商)”最低求助积分说明 900935