Multi-objective optimization of ice distribution uniformity and startup failure time for cold start of PEMFC catalyst layer based on CTnet and PSO-GA

冷启动(汽车) 质子交换膜燃料电池 多孔性 材料科学 复合材料 化学工程 燃料电池 工程类 汽车工程
作者
Zhuwei Liu,Xuping Mao,Zehao Kang,Yin Huang,Zhi Zhang,Dongji Xuan
出处
期刊:Fuel [Elsevier BV]
卷期号:363: 130922-130922 被引量:1
标识
DOI:10.1016/j.fuel.2024.130922
摘要

The distribution of ice in the cathode catalyst layer (CCL) of a proton exchange membrane fuel cell (PEMFC) has a significant impact on cold start. A three-dimensional multiphase numerical model for fuel cell cold start was developed to investigate the first-order finite difference sensitivities of seven selected parameters, namely gas diffusion layer (GDL) porosity, CCL porosity, ionomer volume fraction, inlet temperature, initial membrane water content, catalyst layer (CL) surface area, and initial current, with respect to the uniformity of ice distribution and cold start failure time. Six of these parameters were chosen as inputs for a CNN-Transformers based neural network (CTnet), which was developed using Convolutional Neural Networks (CNN) and the multi-head attention mechanism of Transformers as a surrogate model for cold start. The optimization algorithm PSO-GA was used to find the optimal operating and geometric parameters, aiming to achieve the most uniform ice distribution in the CCL and extend the final cold start failure time. The optimized ice distribution uniformity was found to be 0.204446, showing a 1.1163 % improvement compared to the baseline model. The final cold start failure time was extended by 15.625 % to 185 s compared to the baseline model. The optimized model exhibited a more uniform distribution of ice during cold start, resulting in an extended cold start failure time. This indicates a reduced performance impact on the CCL, thereby improving the durability of the fuel cell. The optimization provides additional time for future auxiliary cold starts, while also enhancing the starting speed of auxiliary cold start through improved ice distribution uniformity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助电池小白采纳,获得10
1秒前
1秒前
1秒前
望阳天完成签到,获得积分20
1秒前
沐林杨发布了新的文献求助10
1秒前
1秒前
kaka完成签到,获得积分10
1秒前
朴素的冬瓜完成签到,获得积分10
2秒前
2秒前
Any完成签到,获得积分10
2秒前
张蕾完成签到,获得积分10
2秒前
白色蒲公英完成签到,获得积分10
3秒前
Zhou完成签到,获得积分10
3秒前
香蕉曼凡发布了新的文献求助10
3秒前
3秒前
桐桐应助丰富的不惜采纳,获得10
3秒前
ksyy完成签到,获得积分10
4秒前
smile完成签到,获得积分10
4秒前
JamesPei应助冬嘉采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
XMY147305发布了新的文献求助10
6秒前
7秒前
Coco完成签到,获得积分10
7秒前
奋斗夏旋完成签到,获得积分10
7秒前
内向士萧发布了新的文献求助10
7秒前
不想看文献完成签到,获得积分10
8秒前
8秒前
韩野发布了新的文献求助20
8秒前
Owen应助药大小金鱼采纳,获得10
9秒前
9秒前
蜒栩柚子完成签到 ,获得积分10
9秒前
9秒前
论文急急令完成签到,获得积分10
9秒前
10秒前
li发布了新的文献求助10
10秒前
Rum完成签到,获得积分10
10秒前
852应助song采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4491099
求助须知:如何正确求助?哪些是违规求助? 3944759
关于积分的说明 12232622
捐赠科研通 3601660
什么是DOI,文献DOI怎么找? 1980842
邀请新用户注册赠送积分活动 1017785
科研通“疑难数据库(出版商)”最低求助积分说明 910619