强化学习
进化算法
计算机科学
进化计算
稳健性(进化)
数学优化
趋同(经济学)
人工智能
多目标优化
控制(管理)
帕累托原理
机器学习
数学
生物化学
化学
经济
基因
经济增长
作者
Tianwei Zhou,Wenwen Zhang,Ben Niu,Pengcheng He,Guanghui Yue
摘要
To address the challenge of parameter adjustment in complex environments, this paper introduces a transfer learning-based parameter control framework via deep reinforcement learning for multiobjective evolutionary algorithms (MOEAs). To avoid the requirement for accurate Pareto front information, this framework is proposed with comprehensive global-state information, including basic problem features, the relative position of individuals, the distribution of fitness value, and the grid-IGD. Building on this framework, four reinforced multiobjective evolutionary algorithms (r-MOEAs) are proposed and tested on four DTLZ benchmarks and eight WFG benchmarks. The results of the comparative analyses reveal that compared with the original MOEAs, the four r-MOEAs exhibit faster convergence and stronger robustness. It is also confirmed that our proposed parameter control framework has the capability to learn knowledge from different experiences and improve the performance of MOEAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI