电解质
化学
硝酸锂
分子动力学
锂(药物)
雷亚克夫
纳米技术
枝晶(数学)
金属锂
阳极
相间
化学物理
电池(电)
离子键合
计算化学
材料科学
离子
热力学
物理化学
有机化学
电极
内分泌学
功率(物理)
物理
生物
医学
原子间势
遗传学
数学
几何学
作者
Mengwen Wang,Qingzhu Sun,Yue Liu,Zhi Yan,Qin Xu,Yuchen Wu,Tao Cheng
标识
DOI:10.1016/j.cjsc.2023.100203
摘要
Lithium metal batteries (LMBs) represent a promising frontier in energy storage technology, offering high energy density but facing significant challenges. In this work, we address the critical challenge of lithium dendrite formation in lithium metal batteries (LMBs), a key barrier to their efficiency and safety. Focusing on the potential of electrolyte additives, specifically lithium nitrate, to inhibit dendritic growth, we employ advanced multiscale simulation techniques to explore the formation and properties of the solid electrolyte interphase (SEI) on the anode surface. Our study introduces a novel hybrid simulation methodology, HAIR (Hybrid ab initio and Reactive force field Molecular Dynamics), which combines ab initio molecular dynamics (AIMD) and reactive force field molecular dynamics (ReaxFF MD). This approach allows for a more precise and reliable examination of the interaction mechanisms of nitrate additives within LMBs. Our findings demonstrate that lithium nitrate contributes to the formation of a stable and fast ionic conductor interface, effectively suppressing dendrite growth. These insights not only advance our understanding of dendrite formation and mitigation strategies in lithium metal batteries but also highlight the efficacy of HAIR as a pioneering tool for simulating complex chemical interactions in battery materials, offering significant implications for the broader field of energy storage technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI