XRan: Explainable deep learning-based ransomware detection using dynamic analysis

勒索软件 计算机科学 可执行文件 人工智能 深度学习 机器学习 卷积神经网络 特征(语言学) 数据挖掘 恶意软件 计算机安全 语言学 哲学 操作系统
作者
Sibel Gulmez,Arzu Gorgulu Kakisim,İbrahim Soğukpınar
出处
期刊:Computers & Security [Elsevier BV]
卷期号:139: 103703-103703 被引量:16
标识
DOI:10.1016/j.cose.2024.103703
摘要

Recently, the frequency and complexity of ransomware attacks have been increasing steadily, posing significant threats to individuals and organizations alike. While traditional signature-based antiransomware systems are effective in the detection of known threats, they struggle to identify new ransomware samples. To address this limitation, many researchers have focused on analyzing the behavior and actions of executables. During this dynamic analysis process, various dynamic-based features emerge, offering different perspectives on the executable's behavior, including Application Program Interface (API) call sequences, dynamic link libraries (DLLs), and mutual exclusions. Existing methods mostly perform machine or deep learning models for feature engineering and detection. These methods usually perform learning according to a single perspective or by combining data from different perspectives into the frequency domain. In this case, they may ignore the information from the other aspects or the sequence relationship between the features. In addition, learning models used in these solutions are mostly incomprehensible to humans, which could be an obstacle in terms of having an insight through the model's mentality and also ransomware's way of work. In this study, we provide XRan (eXplainable deep learning-based RANsomware detection using dynamic analysis), an Explainable Artificial Intelligence (XAI) supported ransomware detection system that combines different dynamic analysis-based sequences, each representing a different view of the executable, in order to enrich the feature space. XRan employs a Convolutional Neural Network (CNN) architecture to detect ransomware and two XAI models as Interpretable Model-Agnostic Explanations (LIME), and SHapley Additive exPlanations (SHAP) to provide local and global explanations for detection. Experimental results demonstrate that XRan provides up to 99.4% True Positive Rate (TPR), and outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丁静完成签到 ,获得积分10
刚刚
1秒前
1秒前
haha哈哈哈完成签到,获得积分10
2秒前
孙晓婷完成签到,获得积分10
2秒前
柯一一应助畅快的亦玉采纳,获得10
4秒前
4秒前
樊香彤发布了新的文献求助10
4秒前
宝贝发布了新的文献求助10
5秒前
5秒前
我是站长才怪应助蒋秋妹采纳,获得10
5秒前
hhhhhh完成签到,获得积分10
5秒前
6秒前
7秒前
爆米花应助popo采纳,获得10
8秒前
WSGQT发布了新的文献求助10
8秒前
mamin发布了新的文献求助10
9秒前
科研通AI2S应助zfm采纳,获得10
9秒前
大神应助水中鱼采纳,获得10
9秒前
10秒前
10秒前
热心市民小红花应助Jurywin采纳,获得10
11秒前
11秒前
cmh发布了新的文献求助10
11秒前
刘晓丹发布了新的文献求助10
11秒前
12秒前
14秒前
梁三柏发布了新的文献求助10
14秒前
14秒前
徐凤年完成签到,获得积分10
14秒前
15秒前
cute发布了新的文献求助10
15秒前
王加通发布了新的文献求助10
15秒前
可靠橘子完成签到,获得积分10
15秒前
Lucas应助怕黑寄凡采纳,获得10
16秒前
mamin完成签到,获得积分20
16秒前
共享精神应助刘晓丹采纳,获得10
17秒前
18秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Essentials of consensual qualitative research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3915286
求助须知:如何正确求助?哪些是违规求助? 3460696
关于积分的说明 10912945
捐赠科研通 3187607
什么是DOI,文献DOI怎么找? 1762000
邀请新用户注册赠送积分活动 852423
科研通“疑难数据库(出版商)”最低求助积分说明 793370