Lymphoma Recognition in Histology Image of Gastric Mucosal Biopsy with Prototype Learning

Softmax函数 卷积神经网络 计算机科学 人工智能 深度学习 模式识别(心理学) 特征(语言学) 特征提取 图形 上下文图像分类 淋巴瘤 病理 图像(数学) 医学 哲学 理论计算机科学 语言学
作者
Jianping Xu,Jingmin Xin,Peiwen Shi,Jiayi Wu,Zheng Chen,Xin Feng,Nanning Zheng
标识
DOI:10.1109/embc40787.2023.10340697
摘要

Lymphomas are a group of malignant tumors developed from lymphocytes, which may occur in many organs. Therefore, accurately distinguishing lymphoma from solid tumors is of great clinical significance. Due to the strong ability of graph structure to capture the topology of the micro-environment of cells, graph convolutional networks (GCNs) have been widely used in pathological image processing. Nevertheless, the softmax classification layer of the graph convolutional models cannot drive learned representations compact enough to distinguish some types of lymphomas and solid tumors with strong morphological analogies on H&E-stained images. To alleviate this problem, a prototype learning based model is proposed, namely graph convolutional prototype network (GCPNet). Specifically, the method follows the patch-to-slide architecture first to perform patch-level classification and obtain image-level results by fusing patch-level predictions. The classification model is assembled with a graph convolutional feature extractor and prototype-based classification layer to build more robust feature representations for classification. For model training, a dynamic prototype loss is proposed to give the model different optimization priorities at different stages of training. Besides, a prototype reassignment operation is designed to prevent the model from getting stuck in local minima during optimization. Experiments are conducted on a dataset of 183 Whole slide images (WSI) of gastric mucosa biopsy. The proposed method achieved superior performance than existing methods.Clinical relevance— The work proposed a new deep learning framework tailored to lymphoma recognition on pathological image of gastric mucosal biopsy to differentiate lymphoma, adenocarcinoma and inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maohui发布了新的文献求助10
1秒前
高挑的梦芝完成签到,获得积分10
3秒前
nanfeng完成签到 ,获得积分10
5秒前
6秒前
6秒前
搜集达人应助nini采纳,获得10
8秒前
丁青发布了新的文献求助10
10秒前
章军关注了科研通微信公众号
10秒前
冷家小区发布了新的文献求助10
11秒前
跳跃尔蓝完成签到 ,获得积分20
12秒前
14秒前
16秒前
18秒前
19秒前
快船总冠军完成签到 ,获得积分10
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
cwy发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助1234采纳,获得10
21秒前
21秒前
Dream发布了新的文献求助10
22秒前
光亮青柏完成签到 ,获得积分10
23秒前
nini发布了新的文献求助10
23秒前
cwy发布了新的文献求助10
24秒前
wsj发布了新的文献求助10
24秒前
木子发布了新的文献求助10
25秒前
吴zzzz发布了新的文献求助10
26秒前
阔达的柠檬完成签到 ,获得积分20
29秒前
高高兴兴完成签到,获得积分10
29秒前
俭朴的语琴完成签到,获得积分20
30秒前
冰魂应助lizhiqian2024采纳,获得10
34秒前
云yun发布了新的文献求助10
37秒前
kiki完成签到 ,获得积分10
37秒前
38秒前
kls完成签到,获得积分10
38秒前
General完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781798
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230805
捐赠科研通 3042262
什么是DOI,文献DOI怎么找? 1669926
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804