Lymphoma Recognition in Histology Image of Gastric Mucosal Biopsy with Prototype Learning

Softmax函数 卷积神经网络 计算机科学 人工智能 深度学习 模式识别(心理学) 特征(语言学) 特征提取 图形 上下文图像分类 淋巴瘤 病理 图像(数学) 医学 哲学 理论计算机科学 语言学
作者
Jianping Xu,Jingmin Xin,Peiwen Shi,Jiayi Wu,Zheng Chen,Xin Feng,Nanning Zheng
标识
DOI:10.1109/embc40787.2023.10340697
摘要

Lymphomas are a group of malignant tumors developed from lymphocytes, which may occur in many organs. Therefore, accurately distinguishing lymphoma from solid tumors is of great clinical significance. Due to the strong ability of graph structure to capture the topology of the micro-environment of cells, graph convolutional networks (GCNs) have been widely used in pathological image processing. Nevertheless, the softmax classification layer of the graph convolutional models cannot drive learned representations compact enough to distinguish some types of lymphomas and solid tumors with strong morphological analogies on H&E-stained images. To alleviate this problem, a prototype learning based model is proposed, namely graph convolutional prototype network (GCPNet). Specifically, the method follows the patch-to-slide architecture first to perform patch-level classification and obtain image-level results by fusing patch-level predictions. The classification model is assembled with a graph convolutional feature extractor and prototype-based classification layer to build more robust feature representations for classification. For model training, a dynamic prototype loss is proposed to give the model different optimization priorities at different stages of training. Besides, a prototype reassignment operation is designed to prevent the model from getting stuck in local minima during optimization. Experiments are conducted on a dataset of 183 Whole slide images (WSI) of gastric mucosa biopsy. The proposed method achieved superior performance than existing methods.Clinical relevance— The work proposed a new deep learning framework tailored to lymphoma recognition on pathological image of gastric mucosal biopsy to differentiate lymphoma, adenocarcinoma and inflammation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
samaritan完成签到,获得积分10
2秒前
猪皮恶人完成签到,获得积分10
2秒前
小HO完成签到,获得积分10
2秒前
hzz完成签到,获得积分10
3秒前
蜀黍完成签到 ,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
李爱国应助平常无颜采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
5秒前
CR7应助科研通管家采纳,获得20
5秒前
小二郎应助科研通管家采纳,获得30
5秒前
今后应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
10秒前
13秒前
ddanren关注了科研通微信公众号
14秒前
eric888完成签到,获得积分0
17秒前
18秒前
18秒前
19秒前
乌云发布了新的文献求助10
23秒前
林烯完成签到 ,获得积分10
24秒前
彭于晏应助麒麟采纳,获得10
25秒前
JamesPei应助麒麟采纳,获得10
25秒前
Jasper应助麒麟采纳,获得10
25秒前
SciGPT应助麒麟采纳,获得30
25秒前
万能图书馆应助麒麟采纳,获得10
25秒前
传奇3应助麒麟采纳,获得10
25秒前
Loooong应助麒麟采纳,获得10
25秒前
丘比特应助麒麟采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921908
求助须知:如何正确求助?哪些是违规求助? 3466730
关于积分的说明 10944393
捐赠科研通 3195511
什么是DOI,文献DOI怎么找? 1765657
邀请新用户注册赠送积分活动 855663
科研通“疑难数据库(出版商)”最低求助积分说明 795039