Q-Learning based system for Path Planning with Unmanned Aerial Vehicles swarms in obstacle environments

计算机科学 障碍物 运动规划 任务(项目管理) 避障 强化学习 群体行为 人工智能 路径(计算) 实时计算 领域(数学) 弹道 控制(管理) 机器人 移动机器人 工程类 系统工程 程序设计语言 物理 数学 天文 纯数学 政治学 法学
作者
Alejandro Puente-Castro,Daniel Rivero,Eurico Pedrosa,Artur Pereira,Nuno Lau,Enrique Fernández-Blanco
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121240-121240 被引量:19
标识
DOI:10.1016/j.eswa.2023.121240
摘要

Path Planning methods for the autonomous control of Unmanned Aerial Vehicle (UAV) swarms are on the rise due to the numerous advantages they bring. There are increasingly more scenarios where autonomous control of multiple UAVs is required. Most of these scenarios involve a large number of obstacles, such as power lines or trees. Despite these challenges, there are also several advantages; if all UAVs can operate autonomously, personnel expenses can be reduced. Additionally, if their flight paths are optimized, energy consumption is reduced, leaving more battery time for other operations. In this paper, a Reinforcement Learning-based system is proposed to solve this problem in environments with obstacles by utilizing Q-Learning. This method allows a model, in this case, an Artificial Neural Network, to self-adjust by learning from its mistakes and successes. Regardless of the map's size or the number of UAVs in the swarm, the goal of these paths is to ensure complete coverage of an area with fixed obstacles for tasks like field prospecting. Setting goals or having any prior information apart from the provided map is not required. During the experimentation phase, five maps of varying sizes were used, each with different obstacles and a varying number of UAVs. To evaluate the quality of the results, the number of actions taken by each UAV to complete the task in each experiment was considered. The results indicate that the system achieves solutions with fewer movements as the number of UAVs increases. An increasing number of UAVs on a map lead to solutions in fewer moves. The results have been compared, and a statistical significance analysis has been conducted on the proposed model's outcomes, demonstrating its capabilities. Thus, it is shown that a two-layer Artificial Neural Network used to implement a Q-Learning algorithm is sufficient to operate on maps with obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zouyangmingjia完成签到,获得积分10
1秒前
美好小熊猫完成签到,获得积分10
1秒前
屑屑鲨鱼完成签到 ,获得积分10
1秒前
儒雅红牛完成签到,获得积分10
3秒前
JIASHOUSHOU完成签到,获得积分10
4秒前
潇潇完成签到,获得积分10
6秒前
wln发布了新的文献求助10
6秒前
6秒前
格仔完成签到,获得积分20
7秒前
活力水桃发布了新的文献求助10
10秒前
12秒前
MCRong应助LL采纳,获得10
14秒前
丸子完成签到 ,获得积分10
16秒前
怕黑的小丸子完成签到 ,获得积分10
16秒前
恋恋青葡萄完成签到,获得积分10
18秒前
19秒前
Eusha发布了新的文献求助10
19秒前
帅气剑通完成签到,获得积分10
20秒前
20秒前
duoduo完成签到 ,获得积分10
21秒前
22秒前
勤恳易真完成签到,获得积分10
22秒前
打打应助冷酷惜寒采纳,获得10
24秒前
甜美的芷发布了新的文献求助10
24秒前
24秒前
27秒前
violet完成签到 ,获得积分10
27秒前
27秒前
28秒前
Dean应助hyd1640采纳,获得200
29秒前
追寻的语梦完成签到,获得积分10
29秒前
31秒前
吃猫的鱼发布了新的文献求助10
33秒前
眼睛大的伊完成签到,获得积分10
35秒前
小马甲应助难过的谷芹采纳,获得10
35秒前
漾漾发布了新的文献求助20
36秒前
xiaosun完成签到,获得积分10
36秒前
你好夏天发布了新的文献求助10
37秒前
弹指一挥间完成签到 ,获得积分10
39秒前
嘉芮完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807341
求助须知:如何正确求助?哪些是违规求助? 4122169
关于积分的说明 12753611
捐赠科研通 3856988
什么是DOI,文献DOI怎么找? 2123479
邀请新用户注册赠送积分活动 1145545
关于科研通互助平台的介绍 1038118