亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Q-Learning based system for Path Planning with Unmanned Aerial Vehicles swarms in obstacle environments

计算机科学 障碍物 运动规划 任务(项目管理) 避障 强化学习 群体行为 人工智能 路径(计算) 实时计算 领域(数学) 弹道 控制(管理) 机器人 移动机器人 工程类 系统工程 程序设计语言 物理 数学 天文 纯数学 政治学 法学
作者
Alejandro Puente-Castro,Daniel Rivero,Eurico Pedrosa,Artur Pereira,Nuno Lau,Enrique Fernández-Blanco
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:235: 121240-121240 被引量:19
标识
DOI:10.1016/j.eswa.2023.121240
摘要

Path Planning methods for the autonomous control of Unmanned Aerial Vehicle (UAV) swarms are on the rise due to the numerous advantages they bring. There are increasingly more scenarios where autonomous control of multiple UAVs is required. Most of these scenarios involve a large number of obstacles, such as power lines or trees. Despite these challenges, there are also several advantages; if all UAVs can operate autonomously, personnel expenses can be reduced. Additionally, if their flight paths are optimized, energy consumption is reduced, leaving more battery time for other operations. In this paper, a Reinforcement Learning-based system is proposed to solve this problem in environments with obstacles by utilizing Q-Learning. This method allows a model, in this case, an Artificial Neural Network, to self-adjust by learning from its mistakes and successes. Regardless of the map's size or the number of UAVs in the swarm, the goal of these paths is to ensure complete coverage of an area with fixed obstacles for tasks like field prospecting. Setting goals or having any prior information apart from the provided map is not required. During the experimentation phase, five maps of varying sizes were used, each with different obstacles and a varying number of UAVs. To evaluate the quality of the results, the number of actions taken by each UAV to complete the task in each experiment was considered. The results indicate that the system achieves solutions with fewer movements as the number of UAVs increases. An increasing number of UAVs on a map lead to solutions in fewer moves. The results have been compared, and a statistical significance analysis has been conducted on the proposed model's outcomes, demonstrating its capabilities. Thus, it is shown that a two-layer Artificial Neural Network used to implement a Q-Learning algorithm is sufficient to operate on maps with obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷先森EPC完成签到,获得积分10
5秒前
6秒前
欣慰的酒窝完成签到 ,获得积分20
7秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
14秒前
沉默寻凝完成签到,获得积分10
18秒前
23秒前
来玩的完成签到 ,获得积分10
29秒前
43秒前
45秒前
1分钟前
1分钟前
1分钟前
国色不染尘完成签到,获得积分10
1分钟前
可爱的函函应助fheu采纳,获得10
1分钟前
kytm完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研难发布了新的文献求助10
1分钟前
1分钟前
小酥饼完成签到,获得积分10
1分钟前
fheu发布了新的文献求助10
1分钟前
1分钟前
标致飞雪完成签到 ,获得积分10
1分钟前
1分钟前
杨艳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
SuzhenZH完成签到,获得积分10
2分钟前
朱朱子完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
momo发布了新的文献求助10
2分钟前
果冻橙完成签到,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702