NIMG-46. MULTI-PARAMETRIC MRI RADIOMIC ANALYSIS USING DEEP LEARNING PREDICTS PERITUMORAL GLIOBLASTOMA INFILTRATION AND SUBSEQUENT RECURRENCE

医学 渗透(HVAC) 流体衰减反转恢复 胶质母细胞瘤 磁共振成像 放射科 无线电技术 接收机工作特性 队列 分级(工程) 核医学 内科学 物理 土木工程 癌症研究 工程类 热力学
作者
Sunwoo Kwak,Hamed Akbari,José García,Suyash Mohan,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v196-v196
标识
DOI:10.1093/neuonc/noad179.0742
摘要

Abstract PURPOSE Glioblastoma (GBM) is the most aggressive and infiltrative brain tumor with a very poor prognosis which hasn’t significantly improved in over 20 years. The almost 100% recurrence rate is due to cancer infiltration beyond the tumor margins currently being targeted by standard of care. Prior studies used traditional supervised machine learning have shown great promise in predicting tumor infiltration beyond these margins. We hypothesize that deep learning methods can further improve such predictive maps and guide intensive, yet targeted and personalized therapies. METHODS MRIs from a cohort of 109 de novo GBM patients were collected from Hospital of the University of Pennsylvania. All the patients incorporated in this study had pre-operative multi-parametric MRI scans including T1, T1Gd, T2, T2-FLAIR, ADC, and underwent surgical resection followed by standard chemoradiation therapy and had pathologically confirmed recurrence. A novel, automated deep learning method, informed by results of prior studies using support vector machines, was constructed to train a patch-based ensemble CNN to identify regions of peri-tumoral cancer infiltration. Leave-one-out was used to evaluate the predictive value of this method, against pathology-proven subsequent recurrence. RESULTS Probability maps, representing the likelihood of tumor infiltration and eventual recurrence, were binarized using threshold of 50% cutoff, compared with actual recurrence on post-recurrence MRI scans. The average cross-validated accuracy was 92%, specificity was 93%, patient-based sensitivity was 78%, and odds-ratio among all patients was 12.95 (Estimated “hot spots” were 12.95 times more likely to present recurrence in the future). CONCLUSIONS This study demonstrates that Multi-parametric MRI pattern analysis using CNN based network can successfully predict tumor infiltration in peritumoral region for Glioblastoma patients. These suggest that new intensive, yet precisely targeted treatments can be developed, guided by AI-driven predictive maps of infiltration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳄鱼蛋发布了新的文献求助10
1秒前
威武丹寒关注了科研通微信公众号
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
2秒前
Dia应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
圆锥香蕉应助科研通管家采纳,获得40
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得30
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Dia应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
兮豫完成签到 ,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得20
4秒前
李健应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
飞翔的鸣应助科研通管家采纳,获得20
4秒前
生动梦松应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Zyk完成签到,获得积分10
4秒前
zjhzslq完成签到,获得积分10
5秒前
烂漫绮兰完成签到,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4720798
求助须知:如何正确求助?哪些是违规求助? 4080953
关于积分的说明 12620250
捐赠科研通 3785915
什么是DOI,文献DOI怎么找? 2091086
邀请新用户注册赠送积分活动 1117152
科研通“疑难数据库(出版商)”最低求助积分说明 994006