NIMG-46. MULTI-PARAMETRIC MRI RADIOMIC ANALYSIS USING DEEP LEARNING PREDICTS PERITUMORAL GLIOBLASTOMA INFILTRATION AND SUBSEQUENT RECURRENCE

医学 渗透(HVAC) 流体衰减反转恢复 胶质母细胞瘤 磁共振成像 放射科 无线电技术 接收机工作特性 队列 分级(工程) 核医学 内科学 物理 土木工程 癌症研究 工程类 热力学
作者
Sunwoo Kwak,Hamed Akbari,José García,Suyash Mohan,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v196-v196
标识
DOI:10.1093/neuonc/noad179.0742
摘要

Abstract PURPOSE Glioblastoma (GBM) is the most aggressive and infiltrative brain tumor with a very poor prognosis which hasn’t significantly improved in over 20 years. The almost 100% recurrence rate is due to cancer infiltration beyond the tumor margins currently being targeted by standard of care. Prior studies used traditional supervised machine learning have shown great promise in predicting tumor infiltration beyond these margins. We hypothesize that deep learning methods can further improve such predictive maps and guide intensive, yet targeted and personalized therapies. METHODS MRIs from a cohort of 109 de novo GBM patients were collected from Hospital of the University of Pennsylvania. All the patients incorporated in this study had pre-operative multi-parametric MRI scans including T1, T1Gd, T2, T2-FLAIR, ADC, and underwent surgical resection followed by standard chemoradiation therapy and had pathologically confirmed recurrence. A novel, automated deep learning method, informed by results of prior studies using support vector machines, was constructed to train a patch-based ensemble CNN to identify regions of peri-tumoral cancer infiltration. Leave-one-out was used to evaluate the predictive value of this method, against pathology-proven subsequent recurrence. RESULTS Probability maps, representing the likelihood of tumor infiltration and eventual recurrence, were binarized using threshold of 50% cutoff, compared with actual recurrence on post-recurrence MRI scans. The average cross-validated accuracy was 92%, specificity was 93%, patient-based sensitivity was 78%, and odds-ratio among all patients was 12.95 (Estimated “hot spots” were 12.95 times more likely to present recurrence in the future). CONCLUSIONS This study demonstrates that Multi-parametric MRI pattern analysis using CNN based network can successfully predict tumor infiltration in peritumoral region for Glioblastoma patients. These suggest that new intensive, yet precisely targeted treatments can be developed, guided by AI-driven predictive maps of infiltration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎琨烨完成签到,获得积分10
1秒前
1秒前
自由冰枫完成签到,获得积分10
2秒前
4秒前
光亮傲珊完成签到,获得积分20
5秒前
6秒前
CC完成签到,获得积分10
6秒前
6秒前
土豆子完成签到,获得积分20
6秒前
在水一方应助诗诗采纳,获得10
7秒前
7秒前
7秒前
8秒前
9秒前
10秒前
FLOR发布了新的文献求助10
10秒前
10秒前
共享精神应助巴啦啦能量采纳,获得10
11秒前
清欢发布了新的文献求助10
12秒前
12秒前
12秒前
samantha完成签到,获得积分10
13秒前
舒适逊完成签到 ,获得积分10
14秒前
李健的粉丝团团长应助sxd采纳,获得10
16秒前
taotao发布了新的文献求助30
16秒前
17秒前
ANDRT发布了新的文献求助10
17秒前
17秒前
共享精神应助x星妍采纳,获得10
18秒前
18秒前
233完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
HDD完成签到,获得积分10
20秒前
滚滚发布了新的文献求助10
23秒前
23秒前
咕咕发布了新的文献求助10
23秒前
23秒前
今后应助核桃采纳,获得80
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807517
求助须知:如何正确求助?哪些是违规求助? 3352243
关于积分的说明 10358183
捐赠科研通 3068352
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810113
科研通“疑难数据库(出版商)”最低求助积分说明 765859