已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictability assessment of as-built hardness of Ti-6Al-4V alloy fabricated via laser powder bed fusion

可预测性 材料科学 融合 合金 激光器 冶金 复合材料 光学 数学 统计 物理 哲学 语言学
作者
Varad Maitra,Jing Shi
出处
期刊:Manufacturing letters [Elsevier BV]
卷期号:35: 785-796 被引量:7
标识
DOI:10.1016/j.mfglet.2023.08.113
摘要

Evaluating the predictability of selective laser melting (SLM) process has been a persistent endeavor in the manufacturing community since the technique's inception. The ability to accurately predict the as-built hardness of fabricated parts is critical to judge its serviceability for specific applications. This investigation aims at achieving such predictability with as little as experimentation possible. In this research, reliable historical SLM data was mined on as-built Ti-6Al-4V alloy, from technical articles published over the past fifteen years. Three predictive models of Gaussian Process Regression (GPR), Neural Network (NN) and parametric Multiple Linear Regression (MLR) were built for as-fabricated bulk hardness of Ti-6Al-4V alloy manufactured via SLM. Ten-fold cross-validation training of the models involved a substantial 1,284 spatial datapoints of major SLM process parameters such as laser power, scanning speed, hatch spacing, layer thickness and volumetric energy density. Ultimate assessment of hardness predictability was performed by making predictions on ten cubic Ti-6Al-4V test coupons fabricated using a SLM machine. The GPR model stood out amongst other models, yielding a mean absolute prediction error of 6.12 HV over all samples. The overall predictability of these models came out to be in declining order of GPR > NN > MLR. Rudimentary characterization of test coupons revealed variation in observed hardness. Two tiers of robust validations, comprehensive dataset, statistical insights, actual experimental validation and material characterization make this study extremely unique for as-fabricated hardness of SLM-ed Ti-6Al-4V alloy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊萨卡完成签到 ,获得积分10
刚刚
深情安青应助能干的人采纳,获得10
3秒前
duobao鱼完成签到,获得积分10
3秒前
4秒前
4秒前
kaka完成签到,获得积分0
7秒前
严明完成签到,获得积分10
11秒前
严明完成签到,获得积分10
11秒前
乐风完成签到 ,获得积分10
11秒前
fb12000发布了新的文献求助10
11秒前
乳酸菌小面包完成签到,获得积分10
12秒前
陶醉的烤鸡完成签到 ,获得积分10
12秒前
俊秀的秋柔完成签到,获得积分10
12秒前
zhou完成签到,获得积分10
13秒前
leeSongha完成签到 ,获得积分10
15秒前
澜生完成签到,获得积分10
17秒前
Orange应助科研通管家采纳,获得10
18秒前
mfr完成签到 ,获得积分10
19秒前
FIN应助科研通管家采纳,获得10
19秒前
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
FIN应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
chenjzhuc应助科研通管家采纳,获得30
19秒前
FIN应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
1111完成签到,获得积分10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
19秒前
FIN应助科研通管家采纳,获得10
19秒前
FIN应助科研通管家采纳,获得10
20秒前
FIN应助科研通管家采纳,获得10
20秒前
Anna完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助150
20秒前
小冠军完成签到,获得积分10
22秒前
23秒前
汤圆完成签到 ,获得积分10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024