Sensitivity Analysis of the Cost Coefficients in Multiobjective Integer Linear Optimization

灵敏度(控制系统) 整数(计算机科学) 数学优化 数学 整数规划 线性规划 多目标优化 计算机科学 工程类 电子工程 程序设计语言
作者
Kim Allan Andersen,Trine Krogh Boomsma,Britta Efkes,Nicolas Forget
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2021.01406
摘要

This paper considers sensitivity analysis of the cost coefficients in multiobjective integer linear programming problems. We define the sensitivity region as the set of simultaneous changes to the coefficients for which the efficient set and its structure remain the same. In particular, we require that the component-wise relation between efficient solutions is preserved and that inefficient solutions remain inefficient, and we show that this is sufficient for the efficient set to be the same upon changes. For a single coefficient, we show that a subset of the inefficient solutions can be excluded from consideration. More specifically, we prove that it suffices to inspect the inefficient solutions of a q-objective problem that are efficient in one of two related q + 1-objective problems. Finally, we show that the sensitivity region is a convex set (an interval). Our approach generalizes to simultaneous changes in multiple coefficients. For illustration, we consider mean-variance capital budgeting and determine the region for which the set of efficient portfolios remains the same, despite a misspecification or a change in the net present values of the projects. Further computational experience with multiobjective binary and integer knapsack problems demonstrates the general applicability of our technique. For instance, we obtain all sensitivity intervals for changes to single coefficients of biobjective problems with 500 binary variables in less than half an hour of CPU time by excluding a large number of inefficient solutions. In fact, the number of excluded solutions is above 100 orders of magnitude larger than the number of remaining solutions. This paper was accepted by Chung Piaw Teo, optimization. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.01406 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助852采纳,获得10
2秒前
机灵的水池完成签到,获得积分10
4秒前
9秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
贰鸟应助科研通管家采纳,获得20
10秒前
贰鸟应助科研通管家采纳,获得20
10秒前
zoro应助科研通管家采纳,获得10
10秒前
贰鸟应助科研通管家采纳,获得20
10秒前
zoro应助科研通管家采纳,获得10
10秒前
林谷雨关注了科研通微信公众号
13秒前
15秒前
15秒前
star发布了新的文献求助10
15秒前
17秒前
20秒前
22秒前
聪明的惜芹完成签到,获得积分10
23秒前
学术大佬发布了新的文献求助20
24秒前
小谢同学完成签到 ,获得积分10
25秒前
追寻啤酒发布了新的文献求助10
27秒前
27秒前
27秒前
余额完成签到 ,获得积分10
30秒前
30秒前
科研通AI5应助聪明的惜芹采纳,获得10
32秒前
guoran完成签到,获得积分10
32秒前
llllxj发布了新的文献求助10
33秒前
33秒前
guoran发布了新的文献求助10
37秒前
皎月诗心完成签到 ,获得积分10
38秒前
39秒前
爆米花应助关尔匕禾页采纳,获得10
39秒前
陈瑞娟发布了新的文献求助10
43秒前
情怀应助meng采纳,获得10
44秒前
45秒前
koutianwu完成签到,获得积分10
46秒前
可乐加冰发布了新的文献求助10
47秒前
_呱_完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751