Predicting efficacy of sub-anesthetic ketamine/esketamine i.v. dose during course of cesarean section for PPD prevention, utilizing traditional logistic regression and machine learning models

氯胺酮 医学 逻辑回归 麻醉 养生 内科学
作者
Qiuwen Li,Kai Gao,Siqi Yang,Shuting Yang,Shouyu Xu,Yunfei Feng,Zhihong Bai,Anqi Ping,Shi‐Chao Luo,Lishan Li,Liangfeng Wang,Guoxun Shi,Kaiming Duan,Saiying Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:339: 264-270 被引量:8
标识
DOI:10.1016/j.jad.2023.07.048
摘要

Increasing researches supported that intravenous ketamine/esketamine during the perioperative period of cesarean section could prevent postpartum depression(PPD). With the effective rate ranging from 87.2 % to 95.5 % in PPD, ketamine/esketamine's responsiveness was individualized. To optimize ketamine dose/form based on puerpera prenatal characteristics, reducing adverse events and improving the total efficacy rate, prediction models were developed to predict ketamine/esketamine's efficacy. Based on two randomized controlled trials, 12 prenatal features of 507 women administered the ketamine/esketamine intervention were collected. Traditional logistics regression, SVM, random forest, KNN and XGBoost prediction models were established with prenatal features and dosage regimen as predictors. According to the logistic regression model (ain = 0.10, aout = 0.15, area under the receiver operating characteristic curve, AUC = 0.728), prenatal Edinburgh Postnatal Depression Scale (EPDS) score ≥ 10, thoughts of self-injury and bad mood during pregnancy were associated with poorer ketamine efficacy in PPD prevention, whilst a high dose of esketamine (0.25 mg/kg loading dose+2 mg/kg PCIA) was the most effective dosage regimen and esketamine was more recommended rather than ketamine in PPD. The AUCvalidation set of KNN and XGBoost model were 0.815 and 0.651, respectively. Logistic regression and machine learning algorithm, especially the KNN model, could predict the effectiveness of ketamine/esketamine iv. during the course of cesarean section for PPD prevention. An individualized preventative strategy could be developed after entering puerpera clinical features into the model, possessing great clinical practice value in reducing PPD incidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼卷肉发布了新的文献求助10
刚刚
jun完成签到 ,获得积分10
刚刚
天天快乐应助认真的忆文采纳,获得10
1秒前
1秒前
小杨发布了新的文献求助10
2秒前
leaves发布了新的文献求助10
2秒前
GGBond完成签到 ,获得积分10
2秒前
Oven完成签到,获得积分10
3秒前
田様应助调皮的勒采纳,获得10
3秒前
zho应助流行咯咯咯采纳,获得10
4秒前
苹果追命发布了新的文献求助10
4秒前
6秒前
7秒前
lili发布了新的文献求助30
7秒前
Hello应助有点儿小脾气采纳,获得10
7秒前
9秒前
WQ完成签到,获得积分10
11秒前
辞却完成签到,获得积分10
11秒前
lyl19880908应助马大勺采纳,获得10
11秒前
LLL发布了新的文献求助10
12秒前
大意的早晨完成签到,获得积分10
12秒前
立军发布了新的文献求助30
13秒前
up完成签到,获得积分10
13秒前
13秒前
苏苏苏完成签到 ,获得积分10
13秒前
小二郎应助简耗子采纳,获得10
13秒前
M.完成签到,获得积分10
14秒前
帅气面包完成签到,获得积分10
14秒前
妍妍完成签到,获得积分10
15秒前
Lucky完成签到 ,获得积分20
16秒前
哈哈哈完成签到,获得积分20
16秒前
16秒前
superhero完成签到,获得积分10
16秒前
跳跃尔琴发布了新的文献求助10
16秒前
再吃一颗苹果完成签到,获得积分10
16秒前
糖糖科研顺利呀完成签到 ,获得积分10
17秒前
lpydz完成签到,获得积分10
17秒前
独狼完成签到 ,获得积分10
18秒前
怕黑面包完成签到 ,获得积分10
18秒前
小梦发布了新的文献求助10
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841815
求助须知:如何正确求助?哪些是违规求助? 3383873
关于积分的说明 10531596
捐赠科研通 3103984
什么是DOI,文献DOI怎么找? 1709463
邀请新用户注册赠送积分活动 823263
科研通“疑难数据库(出版商)”最低求助积分说明 773868