Modified LSHADE-SPACMA with new mutation strategy and external archive mechanism for numerical optimization and point cloud registration

计算机科学 差异进化 威尔科克森符号秩检验 数学优化 突变 人口 趋同(经济学) 算法 参数统计 数学 统计 基因 社会学 人口学 经济 化学 生物化学 经济增长 曼惠特尼U检验
作者
Shengwei Fu,Chi Ma,Ke Li,Cankun Xie,Qingsong Fan,Haisong Huang,Jinlong Xie,Guozhang Zhang,Mingyang Yu
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:58 (3) 被引量:15
标识
DOI:10.1007/s10462-024-11053-1
摘要

Abstract Numerical optimization and point cloud registration are critical research topics in the field of artificial intelligence. The differential evolution algorithm is an effective approach to address these problems, and LSHADE-SPACMA, the winning algorithm of CEC2017, is a competitive differential evolution variant. However, LSHADE-SPACMA’s local exploitation capability can sometimes be insufficient when handling these challenges. Therefore, in this work, we propose a modified version of LSHADE-SPACMA (mLSHADE-SPACMA) for numerical optimization and point cloud registration. Compared to the original approach, this work presents three main innovations. First, we present a precise elimination and generation mechanism to enhance the algorithm’s local exploitation ability. Second, we introduce a mutation strategy based on a modified semi-parametric adaptive strategy and rank-based selective pressure, which improves the algorithm’s evolutionary direction. Third, we propose an elite-based external archiving mechanism, which ensures the diversity of the external population and can accelerate the algorithm’s convergence progress. Additionally, we utilize the CEC2014 (Dim = 10, 30, 50, 100) and CEC2017 (Dim = 10, 30, 50, 100) test suites for numerical optimization experiments, comparing our approach against: (1) 10 recent CEC winner algorithms, including LSHADE, EBOwithCMAR, jSO, LSHADE-cnEpSin, HSES, LSHADE-RSP, ELSHADE-SPACMA, EA4eig, L-SRTDE, and LSHADE-SPACMA; (2) 4 advanced variants: APSM-jSO, LensOBLDE, ACD-DE, and MIDE. The results of the Wilcoxon signed-rank test and Friedman mean rank test demonstrate that mLSHADE-SPACMA not only outperforms the original LSHADE-SPACMA but also surpasses other high-performance optimizers, except that it is inferior L-SRTDE on CEC2017. Finally, 25 point cloud registration cases from the Fast Global Registration dataset are applied for simulation analysis to demonstrate the potential of the developed mLSHADE-SPACMA technique for solving practical optimization problems. The code is available at https://github.com/ShengweiFu?tab=repositories and https://ww2.mathworks.cn/matlabcentral/fileexchange/my-file-exchange
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白芽完成签到,获得积分20
1秒前
刘钱美子发布了新的文献求助10
1秒前
浮游应助求助人员采纳,获得10
1秒前
浮游应助求助人员采纳,获得10
1秒前
2秒前
2秒前
研友_VZG7GZ应助虚拟的乐松采纳,获得10
2秒前
2秒前
2秒前
3秒前
无极微光应助谦让的傲芙采纳,获得20
3秒前
安静海露发布了新的文献求助10
3秒前
假装有昵称完成签到 ,获得积分10
3秒前
甜甜画笔发布了新的文献求助10
3秒前
浅梦发布了新的文献求助10
3秒前
3秒前
4秒前
走不开不快乐完成签到,获得积分10
4秒前
河清海晏发布了新的文献求助10
5秒前
屿杓完成签到,获得积分10
5秒前
lsydbc关注了科研通微信公众号
6秒前
有潜力发布了新的文献求助10
6秒前
aker发布了新的文献求助10
6秒前
坦率灵槐发布了新的文献求助10
7秒前
7秒前
HJJHJH发布了新的文献求助10
8秒前
liucy发布了新的文献求助30
8秒前
9秒前
9秒前
酷酷的笔记本完成签到,获得积分0
9秒前
10秒前
吃花蝴蝶吗完成签到,获得积分10
10秒前
10秒前
10秒前
tianyulu完成签到,获得积分10
11秒前
ZhiyunXu2012完成签到 ,获得积分10
11秒前
12秒前
河清海晏完成签到,获得积分10
13秒前
cchh发布了新的文献求助20
13秒前
鹿仙完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468653
求助须知:如何正确求助?哪些是违规求助? 4571995
关于积分的说明 14333271
捐赠科研通 4498777
什么是DOI,文献DOI怎么找? 2464700
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427921