Time-delayed reservoir computing based on spin-VCSEL: interplay between pump ellipticity and performance

垂直腔面发射激光器 油藏计算 材料科学 自旋(空气动力学) 计算机科学 物理 光电子学 光学 激光器 人工智能 循环神经网络 人工神经网络 热力学
作者
Tao Wang,Qing Fang,Hui‐Ming Wang,Yueyang Wang
出处
期刊:Journal of The Optical Society of America B-optical Physics [Optica Publishing Group]
卷期号:41 (12): 2827-2827
标识
DOI:10.1364/josab.540025
摘要

Reservoir computing, a simplified recurrent neural network, can be implemented using a nonlinear system with delay feedback, known as time-delayed reservoir computing. In this paper, we explore two time-delayed reservoir computing schemes based on the fast dynamics of two polarization channels of a spin-VCSEL and investigate their prediction performance for the Mackey–Glass task. Our main focus is on understanding the impact of pump ellipticity on the prediction performance of the two reservoir computing systems, namely, RC X and RC Y . Through numerical simulation, we find that when the pump ellipticity ( P ) is less than 0.73, the prediction performance of RC Y outperforms RC X . However, beyond this threshold, the performance advantage shifts towards RC X . These findings shed light on the importance of considering pump ellipticity when designing and optimizing reservoir computing systems. Furthermore, we also investigate the influence of the ratio between the delay time and input period on the memory capacity of these systems. Interestingly, we observe that using a delay time of 2.8 times the input cycle enables better prediction performance and memory capacity. This choice not only provides an optimal trade-off between memory capacity and computing speed but also avoids the computational slowdown caused by excessively long delay times. In general, our study emphasizes the flexibility and tunability of the spin-VCSEL-based reservoir computing system. By easily adjusting the ellipticity and delay-time parameters, we can optimize the memory properties, resulting in significantly improved prediction performance. Our findings offer valuable insights for enhancing the performance of reservoir computing systems based on the ultrafast dynamics of spin-VCSELs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的大炮完成签到,获得积分10
3秒前
健壮雨兰完成签到,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
刻苦惜霜完成签到 ,获得积分10
5秒前
9秒前
小精灵发布了新的文献求助10
9秒前
evil完成签到,获得积分10
13秒前
闵SUGA发布了新的文献求助30
13秒前
隐形曼青应助快乐的烨磊采纳,获得10
14秒前
goblue完成签到,获得积分10
16秒前
牛奶面包完成签到 ,获得积分10
18秒前
852应助小精灵采纳,获得10
23秒前
昏睡的妙梦完成签到 ,获得积分10
24秒前
英俊的铭应助KK采纳,获得10
26秒前
29秒前
29秒前
HEAUBOOK应助带象采纳,获得20
32秒前
34秒前
34秒前
36秒前
willa完成签到,获得积分10
37秒前
39秒前
longlonglong完成签到,获得积分10
40秒前
40秒前
41秒前
药小隐发布了新的文献求助10
41秒前
山山而川发布了新的文献求助10
46秒前
天雨流芳发布了新的文献求助10
46秒前
同志你好完成签到,获得积分10
47秒前
52秒前
53秒前
南星发布了新的文献求助10
58秒前
orange9发布了新的文献求助10
59秒前
1分钟前
子虞完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325781
关于积分的说明 10224254
捐赠科研通 3040879
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649