材料科学
掺杂剂
光电流
光电阴极
制氢
化学工程
能量转换效率
催化作用
表面光电压
氢
纳米技术
兴奋剂
光电子学
化学
有机化学
工程类
物理
量子力学
光谱学
电子
作者
Haoyue Zhang,Shengyang Li,Jing Xu,Changzhou Ru,Jiacheng Yu,Jun Luo,Lixuan Mu,Wensheng Shi,Guangwei She
标识
DOI:10.1002/asia.202401284
摘要
Coupling hydrogen evolution reaction (HER) with biomass valorization using a photoelectrochemical (PEC) system presents a promising approach for effectively converting solar energy to chemical energy.. A crucial biomass valorization reaction is the production of value‐added 2,5‐furandicarboxylic acid (FDCA) via 5‐Hydroxymethylfurfural (HMF) oxidation reaction (HMFOR). To achieve efficient FDCA production, we demonstrate an efficient photoanode strategy that combines metal silicidation, dopant segregation, and surface reconstruction to create a bimetallic silicide Ni0.95Pt0.05Si/n‐Si photoanode. The oxide‐free Ni0.95Pt0.05Si/n‐Si interface prepared by the metal‐silicidation process ensures efficient interfacial charge transport, while dopant segregation enhances the Schottky barrier height and photovoltage, and surface reconstruction dramatically improves the catalytic activity of the photoanode surface. The as‐prepared Ni0.95Pt0.05Si/n‐Si photoanode exhibited excellent PEC performance for HMFOR with high conversion of HMF (97.2%) and yield of FDCA (80.3%) under illumination. Furthermore, by integrating a surface reconstructed Ni0.95Pt0.05Si/n‐Si photoanode with a Ni0.95Pt0.05Si/p‐Si photocathode, a dual‐photoelectrode system was constructed capable of simultaneous production of FDCA and H2, which achieves high photocurrent density of 5 mA cm‐2 at zero bias under illumination. This study offers an auspicious prospect for high cost‐effectiveness conversion from solar energy to industrial monomers.
科研通智能强力驱动
Strongly Powered by AbleSci AI