A comprehensive analysis of advanced solar panel productivity and efficiency through numerical models and emotional neural networks

计算机科学 人工神经网络 可用能 高效能源利用 火用 可再生能源 风速 模拟 环境科学 工艺工程 气象学 人工智能 工程类 电气工程 物理
作者
Ali Basem,Serikzhan Opakhai,Z. M. S. Elbarbary,Farruh Atamurotov,Natei Ermias Benti
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:6
标识
DOI:10.1038/s41598-024-70682-2
摘要

This study presents an in-depth analysis and evaluation of the performance of a standard 200 W solar cell, focusing on the energy and exergy aspects. A significant research gap exists in the comprehensive integration of numerical models with advanced machine-learning approaches, specifically emotional artificial neural networks (EANN), to simulate and optimize the electrical characteristics and efficiency of solar panels. To address this gap, a numerical model alongside a novel EANN was employed to simulate the system's electrical characteristics, including open-circuit voltage, short-circuit current, system resistances, maximum power point characteristics, and characteristic curves. Mathematical equations for calculating efficiency levels under varying operational conditions were developed. The system's operational and electrical parameters, alongside environmental conditions such as solar radiation, wind speed, and ambient temperature, were empirically observed and documented over a day. A comparative analysis was conducted to validate the model by comparing its results with manufacturer data and experimental observations. During the trial from 7:00 to 17:00, energy efficiency varied from 10.34 to 14.00%, averaging 13.6%, while exergy efficiency ranged from 13.57 to 16.41%, with an average of 15.70%. The results from the EANN model indicate that the proposed method for forecasting energy, exergy, and power is feasible, offering a significant reduction in computational expense compared to traditional numerical models. The integration of numerical modeling with EANN enhances simulation accuracy and the developed equations enable real-time efficiency calculations. Empirical validation under varying environmental conditions improves predictive capabilities for solar panel performance. Additionally, operational efficiency assessments aid in better design and deployment of solar energy systems, and computational costs for large-scale solar energy simulations are reduced.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa完成签到 ,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
3秒前
RuiLi完成签到,获得积分10
3秒前
helly发布了新的文献求助10
4秒前
4秒前
Jane完成签到,获得积分10
5秒前
6秒前
斯文的炳完成签到,获得积分10
6秒前
奋斗的萝发布了新的文献求助10
8秒前
8秒前
平常的寻真完成签到,获得积分10
8秒前
9秒前
snutcc发布了新的文献求助10
9秒前
10秒前
OrthoDW完成签到,获得积分10
11秒前
12秒前
高晨焜完成签到,获得积分10
12秒前
英俊的铭应助息兮采纳,获得10
14秒前
123456发布了新的文献求助10
14秒前
16秒前
玖玖发布了新的文献求助10
16秒前
17秒前
17秒前
荔枝完成签到,获得积分20
18秒前
郭囯完成签到,获得积分10
19秒前
Ar关闭了Ar文献求助
20秒前
量子星尘发布了新的文献求助10
20秒前
chujun_cai完成签到 ,获得积分10
20秒前
20秒前
华仔应助奋斗的萝采纳,获得10
21秒前
英俊的铭应助miaomiao采纳,获得10
21秒前
wangnn完成签到,获得积分10
22秒前
荔枝发布了新的文献求助20
22秒前
缥缈南露发布了新的文献求助10
22秒前
院愿完成签到 ,获得积分10
22秒前
亦玉发布了新的文献求助10
23秒前
23秒前
bhkwxdxy完成签到,获得积分10
25秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248080
求助须知:如何正确求助?哪些是违规求助? 3781205
关于积分的说明 11871436
捐赠科研通 3434064
什么是DOI,文献DOI怎么找? 1884767
邀请新用户注册赠送积分活动 936342
科研通“疑难数据库(出版商)”最低求助积分说明 842268