Machine-learning diagnostics of breast cancer using piRNA biomarkers

乳腺癌 癌症 医学 生物标志物 肿瘤科 计算生物学 内科学 生物信息学 生物 遗传学
作者
Alison Zhao,Valentina L. Kouznetsova,Santosh Kesari,Igor F. Tsigelny
出处
期刊:Biomarkers [Taylor & Francis]
卷期号:: 1-21
标识
DOI:10.1080/1354750x.2025.2461067
摘要

Prior studies have shown that small non-coding RNAs (sncRNAs) are associated with cancer occurrence or development. Recently, a newly discovered class of small ncRNAs known as PIWI-interacting RNAs (piRNAs) have been found to play a vital role in physiological processes and cancer initiation. This study aims to utilize piRNAs as innovative, noninvasive diagnostic biomarkers for breast cancer. Our objective is to develop computational methods that leverage piRNA attributes for breast cancer prediction and its application in diagnostics. We created a set of piRNA sequence descriptors using information extracted from the piRNA sequences. To ensure accuracy, we found a path to convert non-standard piRNA to standard names to enable precise identification of these sequences. Using these descriptors, we applied machine-learning (ML) techniques in WEKA (Waikato Environment for Knowledge Analysis) to a dataset of piRNA to assess the predictive accuracy of the following classifiers: Logistic Regression model, Sequential Minimal Optimization (SMO), Random Forest classifier, and Logistic Model Tree (LMT). Furthermore, we performed Shapley additive explanations (SHAP) Analysis to understand which descriptors were the most relevant to the prediction accuracy. The ML models were then validated on an independent dataset to evaluate their effectiveness in predicting breast cancer. The top three performing classifiers in WEKA were Logistic Regression, SMO, and LMT. The Logistic Regression model achieved an accuracy of 90.7% in predicting breast cancer, while SMO and LMT attained 89.7% and 85.65%, respectively. Our study demonstrates the effectiveness of using ML-based piRNA classifiers in diagnosing breast cancer and contributes to the growing body of evidence supporting piRNAs as biomarkers in cancer diagnosis. However, additional research is needed to validate these findings and further assess the clinical applicability of this approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助微笑采纳,获得10
1秒前
我是老大应助微笑采纳,获得10
2秒前
李爱国应助微笑采纳,获得10
2秒前
之桃发布了新的文献求助10
2秒前
hahhhah完成签到 ,获得积分10
3秒前
6秒前
子凡完成签到 ,获得积分10
7秒前
浮云发布了新的文献求助30
9秒前
斑其发布了新的文献求助10
9秒前
叮当完成签到 ,获得积分10
10秒前
11秒前
17秒前
嘉子完成签到 ,获得积分10
19秒前
星辰大海应助我不是ml采纳,获得10
20秒前
爆米花应助猪猪hero采纳,获得10
21秒前
学术通zzz发布了新的文献求助100
22秒前
干净的小馒头完成签到 ,获得积分10
23秒前
儿学化学打断腿完成签到,获得积分10
25秒前
安呢完成签到,获得积分10
27秒前
Hello应助浮云采纳,获得30
28秒前
xxxxxxlp完成签到,获得积分10
28秒前
丘比特应助lxd采纳,获得10
28秒前
35秒前
科研通AI5应助lizhiqian2024采纳,获得10
35秒前
38秒前
40秒前
42秒前
Viv完成签到,获得积分10
43秒前
lxd发布了新的文献求助10
43秒前
霜月十四完成签到,获得积分10
43秒前
大橘为重发布了新的文献求助10
44秒前
ykxa发布了新的文献求助10
48秒前
50秒前
我不是ml发布了新的文献求助10
55秒前
吴云鹏完成签到,获得积分10
55秒前
57秒前
8R60d8应助lyp采纳,获得20
58秒前
塔菲尔完成签到 ,获得积分10
1分钟前
潘啊潘完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323535
关于积分的说明 10214771
捐赠科研通 3038698
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315