材料科学
电解质
电化学
法拉第效率
化学工程
电化学窗口
X射线光电子能谱
电池(电)
准固态
静电纺丝
阴极
锂(药物)
离子电导率
聚合物
电极
复合材料
物理化学
化学
色素敏化染料
工程类
医学
功率(物理)
物理
量子力学
内分泌学
作者
Vasantan Rasupillai Dharmaraj,Dheeraj Kumar Maurya,Ayan Sarkar,Hsiu‐Hui Su,Yi‐An Chen,Han‐Chen Chen,Yu‐Ping Lin,Ren‐Jei Chung,Ru‐Shi Liu
标识
DOI:10.1002/aenm.202405101
摘要
Abstract This article reports a high‐performance rechargeable battery enabled by an electrospun quasi‐solid‐state electrolyte (E‐QSSE). The E‐QSSE, composed of Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP), Mg(NO 3 ) 2 salt, and Pyr 14 TFSI ionic liquid (IL), exhibits high Mg 2+ ion transport and interfacial stability. A unique sandwich structure coupling the E‐QSSE with a Ruthenium nanoparticles decorated multi‐walled carbon nanotubes (Ru/CNT) cathode catalyst on carbon paper significantly augments electrochemical reversibility. The optimized E‐QSSE with a 1:1 molar ratio of salt and IL achieves a high room temperature ionic conductivity of 6.39 mS cm −1 . The E‐QSSE's electrochemical stability window extends up to 3.95 V, showcasing its potential for high‐energy‐density applications. The Mg‐O 2 cell, with the optimized E‐QSSE, delivers 115 discharge/charge cycles at 100 mA g −1 , one of the longest reported cycle‐lives for secondary Mg‐O 2 batteries. The battery exhibits a maximum discharge capacity of 9305 mAh g −1 with 100% Coulombic efficiency. X‐ray photoelectron spectroscopy and absorption near‐edge structure analyses reveal MgO as the primary discharge product, with MgF 2 contributing to stable solid electrolyte interphase. This E‐QSSE design promotes efficient Mg 2+ ion migration and stable electrochemical reactions. This work advances the development of stable, high‐capacity Mg‐O 2 batteries and can open up avenues for quasi‐solid‐state electrolytes in post‐lithium metal‐air battery technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI