Autonomously Adjusting Multi-Relational Hypergraphs Structure for Predicting circRNA-MiRNA Associations

计算机科学 小RNA 关系数据库 数据挖掘 理论计算机科学 人工智能 生物 基因 遗传学
作者
Wenjing Yin,Shudong Wang,Yuanyuan Zhang,Sibo Qiao,Shuqiang Wang,Fazlullah Khan,Ryan Alturki,Zhihan Lyu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2025.3531427
摘要

Identifying circRNA-miRNA associations is critical for understanding gene regulatory mechanisms, discovering new biomarkers, and developing therapeutic strategies. The ongoing advancement of autonomous artificial intelligence (AI) technology, particularly in relational and graph learning, enables researchers to develop autonomous AI prediction models to process and analyze existing associations. These models can autonomously extract meaningful patterns and relationships, thereby accurately predicting unknown associations and providing efficient auxiliary tools for traditional experimental methods. Unfortunately, validated reliable circRNA-miRNA associations are often very sparse, making it difficult to learn the intrinsic associations between circRNAs and miRNAs from a static explicit graph structure. To alleviate this problem, we propose a new autonomous AI prediction framework that combines local simple associations with global high-order interactions for joint learning. The framework captures locally embedded representations based on the similarity relationships of RNA molecule attributes, and aggregates contextual information across the global region in different relational modes by applying message passing on multi-relational hypergraphs. Furthermore, we design an autonomous adjustment strategy for multi-relational hypergraphs. This strategy enables adaptive learning of potential node correlations and autonomous construction of hypergraph structures more suitable for downstream tasks, thereby enhancing higher-order relationships between RNA molecules and improving prediction performance and generalization capabilities. Experimental results on three real-world datasets demonstrate that this framework performs excellently in predicting circRNA-miRNA associations, significantly outperforming existing prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NanNan626完成签到,获得积分10
2秒前
duan完成签到 ,获得积分10
4秒前
桐桐应助无处不在采纳,获得10
5秒前
7秒前
Plum22完成签到 ,获得积分10
12秒前
zrs发布了新的文献求助10
14秒前
14秒前
kk完成签到 ,获得积分10
16秒前
大个应助advance采纳,获得30
16秒前
科研通AI5应助zrs采纳,获得10
18秒前
19秒前
20秒前
ikun0000完成签到,获得积分10
21秒前
21秒前
23秒前
JJ完成签到 ,获得积分10
23秒前
烂漫念文发布了新的文献求助10
25秒前
26秒前
欢呼煎蛋发布了新的文献求助30
26秒前
现实的俊驰完成签到 ,获得积分10
27秒前
27秒前
28秒前
无处不在发布了新的文献求助10
28秒前
advance发布了新的文献求助30
30秒前
学术通zzz发布了新的文献求助10
31秒前
烂漫念文完成签到,获得积分10
31秒前
怡然依柔完成签到,获得积分10
32秒前
院士候选人之一完成签到,获得积分10
33秒前
33秒前
Moihan完成签到,获得积分10
34秒前
无处不在完成签到 ,获得积分10
36秒前
stqs完成签到,获得积分10
43秒前
Akiii_完成签到,获得积分10
45秒前
XinyuLu完成签到,获得积分10
48秒前
玩命的紫南完成签到 ,获得积分10
48秒前
文献荒完成签到,获得积分10
49秒前
50秒前
50秒前
xiaozhang发布了新的文献求助10
54秒前
玉龙月发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315