清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Autonomously Adjusting Multi-Relational Hypergraphs Structure for Predicting circRNA-MiRNA Associations

计算机科学 小RNA 关系数据库 数据挖掘 理论计算机科学 人工智能 生物 基因 遗传学
作者
Wenjing Yin,Shudong Wang,Yuanyuan Zhang,Sibo Qiao,Shuqiang Wang,Fazlullah Khan,Ryan Alturki,Zhihan Lyu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/jbhi.2025.3531427
摘要

Identifying circRNA-miRNA associations is critical for understanding gene regulatory mechanisms, discovering new biomarkers, and developing therapeutic strategies. The ongoing advancement of autonomous artificial intelligence (AI) technology, particularly in relational and graph learning, enables researchers to develop autonomous AI prediction models to process and analyze existing associations. These models can autonomously extract meaningful patterns and relationships, thereby accurately predicting unknown associations and providing efficient auxiliary tools for traditional experimental methods. Unfortunately, validated reliable circRNA-miRNA associations are often very sparse, making it difficult to learn the intrinsic associations between circRNAs and miRNAs from a static explicit graph structure. To alleviate this problem, we propose a new autonomous AI prediction framework that combines local simple associations with global high-order interactions for joint learning. The framework captures locally embedded representations based on the similarity relationships of RNA molecule attributes, and aggregates contextual information across the global region in different relational modes by applying message passing on multi-relational hypergraphs. Furthermore, we design an autonomous adjustment strategy for multi-relational hypergraphs. This strategy enables adaptive learning of potential node correlations and autonomous construction of hypergraph structures more suitable for downstream tasks, thereby enhancing higher-order relationships between RNA molecules and improving prediction performance and generalization capabilities. Experimental results on three real-world datasets demonstrate that this framework performs excellently in predicting circRNA-miRNA associations, significantly outperforming existing prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海浩阑应助科研通管家采纳,获得30
15秒前
32秒前
34秒前
wangwangxiao完成签到 ,获得积分10
53秒前
桐桐应助sxmt123456789采纳,获得30
54秒前
领导范儿应助澳澳采纳,获得10
1分钟前
1分钟前
1分钟前
sxmt123456789发布了新的文献求助30
1分钟前
2分钟前
归海浩阑应助科研通管家采纳,获得20
2分钟前
归海浩阑应助科研通管家采纳,获得10
2分钟前
归海浩阑应助科研通管家采纳,获得20
2分钟前
2分钟前
科研通AI5应助要减肥中蓝采纳,获得10
2分钟前
研友_nEWRJ8完成签到,获得积分10
3分钟前
LIFE2020完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI5应助要减肥中蓝采纳,获得10
3分钟前
3分钟前
大熊完成签到 ,获得积分10
4分钟前
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助50
4分钟前
深情安青应助十分十分佳采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
猪猪侠发布了新的文献求助10
4分钟前
汉堡包应助猪猪侠采纳,获得10
5分钟前
满意的伊完成签到,获得积分10
5分钟前
5分钟前
lovelife完成签到,获得积分10
5分钟前
5分钟前
所所应助科研通管家采纳,获得10
6分钟前
6分钟前
梅思寒完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065489
求助须知:如何正确求助?哪些是违规求助? 4288086
关于积分的说明 13359624
捐赠科研通 4106843
什么是DOI,文献DOI怎么找? 2248884
邀请新用户注册赠送积分活动 1254395
关于科研通互助平台的介绍 1186135