阳极
材料科学
锌
阴极
电偶阳极
聚合物
化学工程
多孔性
电极
图层(电子)
制作
沉积(地质)
铁电性
电流密度
水溶液
相(物质)
纳米技术
光电子学
复合材料
阴极保护
冶金
电介质
有机化学
化学
量子力学
替代医学
沉积物
古生物学
物理化学
病理
工程类
物理
医学
生物
作者
Hongcheng Zhang,Guoyin Zhu,Jingqi Lu,Yanan Hou,Yuwen Bao,Pin Liu,Yizhou Zhang
出处
期刊:Small
[Wiley]
日期:2024-12-10
被引量:3
标识
DOI:10.1002/smll.202408848
摘要
Abstract The abundant availability of zinc and its environmentally friendly properties have increasingly drawn attention to the potential of aqueous zinc‐ion batteries (AZIBs). However, their development is hindered by the formation of zinc dendrites and severe side reactions during charge/discharge cycles. In this work, a novel strategy is introduced to address these challenges by constructing a ferroelectric porous PVDF‐HFP protective layer (PH‐ZF) on the zinc anode surface using 3D printing technology. This approach not only simplifies the fabrication process but also achieves a high content of β‐phase PVDF‐HFP without the need for post‐treatment. The ferroelectric porous polymer layer effectively regulates ion concentration distribution on the zinc anode surface, promoting uniform Zn 2+ deposition. As a result, symmetric batteries exhibit cycle lifetimes of 1200 and 2000 h at current densities of 0.5 and 1.0 mA cm −2 , respectively. Furthermore, full batteries with MnO 2 cathodes maintained a discharge specific capacity of ≈88.3 mA g −1 after 1000 cycles at a current density of 1.0 A g −1 , in contrast to bare zinc electrodes, which retain only 51 mAh g −1 under the same conditions. This method offers a promising approach for enhancing zinc anode protection and advancing ZIB performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI