电负性
配体(生物化学)
金属有机骨架
金属
化学
热液循环
理论(学习稳定性)
化学稳定性
结构稳定性
化学工程
材料科学
有机化学
计算机科学
受体
工程类
生物化学
吸附
结构工程
机器学习
作者
Guanjie Huang,Jianzhong Ma,Jie Chen,Wenbo Zhang,Qianqian Fan,Buxing Han
标识
DOI:10.1002/advs.202413853
摘要
Abstract Structural stability of metal–organic framework (MOF) is crucial for their application, and thus it is of great significance to construct MOFs with controllable structural stability. Herein, a strategy based on adjusting the electronic environment of ligands to regulate the structure stability of MOF is proposed. Briefly, a novel Zr‐MOF (Zr‐TA) with hydroxyl groups is synthesized. The hydroxyl groups are esterified to obtain ester groups with stronger electronegativity, which can weaken the strength of coordination between metal ion and ligand, thereby regulating the structure stability of the Zr‐MOF. Notably, this strategy can achieve controllable adjustment of the structure by adding modifiers at the appropriate time. In this work, this strategy is used to greatly improving the binding ability of MOF and collagen fibers, the hydrothermal stability of crosslinked collagen fibers is enhanced by 82.6%. Surprisingly, this strategy can also be applied to other application fields that require dynamic changes in structural stability of MOF. It will open up a new pathway for controlling the structural stability and application performance of MOF.
科研通智能强力驱动
Strongly Powered by AbleSci AI