Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia

非阻塞I/O 硝酸盐 电场 还原(数学) 异质结 材料科学 无机化学 领域(数学) 光电子学 化学 化学工程 物理 催化作用 有机化学 数学 工程类 量子力学 几何学 纯数学
作者
Ying Chen,Xing-Yuan Xia,Lei Tian,Meng-Ying Yin,Lingling Zheng,Qian Fu,Daishe Wu,Jian‐Ping Zou
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:35 (12): 109789-109789 被引量:10
标识
DOI:10.1016/j.cclet.2024.109789
摘要

Electrocatalytic reduction of nitrate (NO3−) at low concentrations to ammonia (NH4+) still faces challenges of low NO3− conversion and NH4+ selectivity due to the sluggish mass transfer and insufficient atomic hydrogen (H*) supply. Herein, we propose CuO/NiO heterojunction with the assistance of a built-in electric field to enhance mass transfer and H* provision. The built-in electric field in CuO/NiO is successfully formed as demonstrated by X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. The results reveal that CuO/NiO achieves high NO3− reduction activity (100%) and NH4+ selectivity (100%) under low NO3− concentration conditions (100 mg/L NO3−, ca. 22.6 mg/L NO3−–N), which is superior to that of many recently reported electrocatalysts. Density functional theory calculations further clarify that the built-in electric field triggers the enhanced adsorption of reactants on CuO/NiO heterojunction interface and strong d-p orbital hybridization between reactants and CuO/NiO. Besides, the free energy diagram of hydrogen evolution reaction of CuO/NiO confirms the realization of enhanced H* provision. Moreover, coupling experiments and consecutive cycle tests demonstrate the potential of CuO/NiO in practical applications. This work may open up a new path and guide the development of efficient electrocatalysts for electrocatalytic reduction of NO3− at low concentrations to NH4+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UP完成签到,获得积分10
1秒前
1秒前
4秒前
JamesPei应助blklxt采纳,获得10
4秒前
6秒前
胖心怡完成签到,获得积分10
7秒前
8秒前
xxxxxb完成签到,获得积分10
8秒前
yyc发布了新的文献求助10
11秒前
kimihiro23完成签到,获得积分10
11秒前
fengzi151发布了新的文献求助10
11秒前
Yang完成签到,获得积分10
14秒前
14秒前
15秒前
个性南莲完成签到,获得积分10
15秒前
ffw1完成签到,获得积分10
15秒前
Jiayi完成签到,获得积分10
15秒前
16秒前
小小智完成签到,获得积分0
18秒前
19秒前
奋斗的小林完成签到,获得积分10
20秒前
动漫大师发布了新的文献求助10
20秒前
20秒前
科研助手6应助金小航采纳,获得10
20秒前
21秒前
21秒前
曹笑笑发布了新的文献求助10
22秒前
Lucas应助梦醒人间看微雨采纳,获得10
23秒前
Zhouyang发布了新的文献求助10
24秒前
乐乐应助yangyajie采纳,获得10
25秒前
阿九发布了新的文献求助10
25秒前
blklxt发布了新的文献求助10
26秒前
77发布了新的文献求助10
27秒前
Dding完成签到,获得积分10
27秒前
27秒前
29秒前
Rafayel完成签到 ,获得积分10
30秒前
MR_Z发布了新的文献求助10
32秒前
Zhouyang完成签到,获得积分10
32秒前
田様应助伯赏满天采纳,获得10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799327
求助须知:如何正确求助?哪些是违规求助? 3344954
关于积分的说明 10322665
捐赠科研通 3061436
什么是DOI,文献DOI怎么找? 1680323
邀请新用户注册赠送积分活动 807007
科研通“疑难数据库(出版商)”最低求助积分说明 763453