A classification tool to foster self-regulated learning with generative artificial intelligence by applying self-determination theory: a case of ChatGPT

生成语法 教育技术 人工智能 计算机科学 生成模型 自主学习 心理学 数学教育
作者
Thomas K. F. Chiu
出处
期刊:Educational Technology Research and Development [Springer Science+Business Media]
被引量:4
标识
DOI:10.1007/s11423-024-10366-w
摘要

Abstract Generative AI such as ChatGPT provides an instant and individualized learning environment, and may have the potential to motivate student self-regulated learning (SRL), more effectively than other non-AI technologies. However, the impact of ChatGPT on student motivation, SRL, and needs satisfaction is unclear. Motivation and the SRL process can be explained using self-determination theory (SDT) and the three phases of forethought, performance, and self-reflection, respectively. Accordingly, a Delphi design was employed in this study to determine how ChatGPT-based learning activities satisfy students’ each SDT need, and foster each SRL phase from a teacher perspective. We involved 36 SDT school teachers with extensive expertise in technology enhanced learning to develop a classification tool for learning activities that affect student needs satisfaction and SRL phases using ChatGPT. We collaborated with the teachers in three rounds to investigate and identify the activities, and we revised labels, descriptions, and explanations. The major finding is that a classification tool for 20 learning activities using ChatGPT was developed. The tool suggests how ChatGPT better satisfy SDT-based needs, and fosters the three SRL phrases. This classification tool can assist researchers in replicating, implementing, and integrating successful ChatGPT in education research and development projects. The tool can inspire teachers to modify the activities using generative AI for their own teaching, and inform policymakers on how to develop guidelines for AI in education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mys发布了新的文献求助20
1秒前
王某某发布了新的文献求助10
2秒前
YH完成签到,获得积分10
6秒前
6秒前
6秒前
Anth发布了新的文献求助10
7秒前
乃惜发布了新的文献求助10
7秒前
An发布了新的文献求助10
9秒前
123发布了新的文献求助10
12秒前
懦弱的如萱完成签到 ,获得积分10
14秒前
marco完成签到 ,获得积分10
14秒前
李健的小迷弟应助Anth采纳,获得10
15秒前
16秒前
16秒前
知来者完成签到,获得积分10
17秒前
tangzhuojuan发布了新的文献求助10
18秒前
科研通AI2S应助Zhang_BY采纳,获得10
19秒前
21秒前
ng完成签到 ,获得积分10
21秒前
123完成签到,获得积分10
24秒前
Bingtao_Lian发布了新的文献求助10
26秒前
27秒前
hy完成签到 ,获得积分10
28秒前
29秒前
可爱的函函应助猪猪hero采纳,获得10
30秒前
强小强完成签到,获得积分10
31秒前
Huco完成签到,获得积分10
32秒前
菲菲发布了新的文献求助10
32秒前
33秒前
和谐烨霖发布了新的文献求助10
33秒前
33秒前
tigerli发布了新的文献求助10
34秒前
36秒前
xiaozhang发布了新的文献求助10
37秒前
梧桐发布了新的文献求助10
37秒前
dasheenly完成签到,获得积分10
38秒前
apricity完成签到,获得积分20
38秒前
Hello应助tigerli采纳,获得10
40秒前
apricity发布了新的文献求助10
42秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Elephant Welfare in Global Tourism 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3898505
求助须知:如何正确求助?哪些是违规求助? 3442787
关于积分的说明 10828103
捐赠科研通 3167558
什么是DOI,文献DOI怎么找? 1750179
邀请新用户注册赠送积分活动 845790
科研通“疑难数据库(出版商)”最低求助积分说明 788882