A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

炸薯条 计算机科学 嵌入式系统 电信
作者
Meng Huang,Honglei Wei,Xianyi Zhai
出处
期刊:Computers, materials & continua 卷期号:79 (1): 531-547 被引量:2
标识
DOI:10.32604/cmc.2024.048510
摘要

In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing.However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging.Moreover, the complexity of generic target detection algorithms hampers seamless deployment.Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8.Initially, to alleviate the influence of diminutive, low-resolution markings on the precision of deep learning models, we utilize an upscaling approach for enhanced resolution.This technique relies on the Super-Resolution Generative Adversarial Network with Extended Training (SRGANext) network, facilitating the reconstruction of high-fidelity images that align with input specifications.Subsequently, we replace the original YOLOv8s model's backbone feature extraction network with the lightweight Vanilla Network (VanillaNet), simplifying the branch structure to reduce network parameters.Finally, a Hybrid Attention Mechanism (HAM) is implemented to capture essential details from input images, improving feature representation while concurrently expediting model inference speed.Experimental results demonstrate that the Van-YOLOv8 network outperforms the original YOLOv8s on a recycled chip dataset in various aspects.Significantly, it demonstrates superiority in parameter count, computational intricacy, precision in identifying targets, and speed when compared to certain prevalent algorithms in the current landscape.The proposed approach proves promising for real-time detection of recycled chips in practical factory settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Lucas应助香蕉猴子啦啦啦采纳,获得10
1秒前
吃货发布了新的文献求助10
1秒前
无极微光应助酶来研去采纳,获得40
2秒前
reai发布了新的文献求助30
2秒前
2秒前
易安发布了新的文献求助10
2秒前
3秒前
3秒前
自觉的豌豆完成签到,获得积分10
4秒前
123123完成签到,获得积分10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785091
求助须知:如何正确求助?哪些是违规求助? 5685673
关于积分的说明 15466575
捐赠科研通 4914208
什么是DOI,文献DOI怎么找? 2645113
邀请新用户注册赠送积分活动 1592892
关于科研通互助平台的介绍 1547293