A transformer-based deep learning model for early prediction of lymph node metastasis in locally advanced gastric cancer after neoadjuvant chemotherapy using pretreatment CT images

医学 淋巴结 放射科 深度学习 化疗 淋巴 淋巴结转移 癌症 肿瘤科 转移 内科学 人工智能 病理 计算机科学
作者
Yunlin Zheng,Bingjiang Qiu,Shunli Liu,Ruirui Song,Xianqi Yang,Lei Wu,Zhihong Chen,Abudouresuli Tuersun,Xiaotang Yang,Wei Wang,Zaiyi Liu
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:75: 102805-102805 被引量:5
标识
DOI:10.1016/j.eclinm.2024.102805
摘要

SummaryBackgroundEarly prediction of lymph node status after neoadjuvant chemotherapy (NAC) facilitates promptly optimization of treatment strategies. This study aimed to develop and validate a deep learning network (DLN) using baseline computed tomography images to predict lymph node metastasis (LNM) after NAC in patients with locally advanced gastric cancer (LAGC).MethodsA total of 1205 LAGC patients were retrospectively recruited from three hospitals between January 2013 and March 2023, constituting a training cohort, an internal validation cohort, and two external validation cohorts. A transformer-based DLN was developed using 3D tumor images to predict LNM after NAC. A clinical model was constructed through multivariate logistic regression analysis as a baseline for subsequent comparisons. The performance of the models was evaluated through discrimination, calibration, and clinical applicability. Furthermore, Kaplan–Meier survival analysis was conducted to assess overall survival (OS) of LAGC patients at two follow-up centers.FindingsThe DLN outperformed the clinical model and demonstrated a robust performance for predicting LNM in the training and validation cohorts, with areas under the curve (AUCs) of 0.804 (95% confidence interval [CI], 0.752–0.849), 0.748 (95% CI, 0.660–0.830), 0.788 (95% CI, 0.735–0.835), and 0.766 (95% CI, 0.717–0.814), respectively. Decision curve analysis exhibited a high net clinical benefit of the DLN. Moreover, the DLN was significantly associated with the OS of LAGC patients [Center 1: hazard ratio (HR), 1.789, P < 0.001; Center 2:HR, 1.776, P = 0.013].InterpretationThe transformer-based DLN provides early and effective prediction of LNM and survival outcomes in LAGC patients receiving NAC, with promise to guide individualized therapy. Future prospective multicenter studies are warranted to further validate our model.FundingNational Natural Science Foundation of China (NO. 82373432, 82171923, 82202142), Project Funded by China Postdoctoral Science Foundation (NO. 2022M720857), Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (NO. U22A20345), National Science Fund for Distinguished Young Scholars of China (NO. 81925023), Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (NO. 2022B1212010011), High-level Hospital Construction Project (NO. DFJHBF202105), Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (NO. 2024B1515020091).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
derrickZ发布了新的文献求助10
1秒前
烟花应助辻渃采纳,获得10
1秒前
小二郎应助优雅的白安采纳,获得10
5秒前
snail01完成签到,获得积分10
7秒前
11秒前
orixero应助悦耳的怀绿采纳,获得10
11秒前
13秒前
Jasper应助菜籽采纳,获得10
14秒前
14秒前
肖博文发布了新的文献求助30
16秒前
明朗完成签到 ,获得积分10
17秒前
辻渃给辻渃的求助进行了留言
17秒前
17秒前
风中海云发布了新的文献求助30
17秒前
18秒前
小吴发布了新的文献求助10
21秒前
23秒前
27秒前
30秒前
33秒前
吃瓜米吃瓜米完成签到 ,获得积分10
33秒前
33秒前
JamesPei应助小吴采纳,获得10
35秒前
赘婿应助BY采纳,获得10
35秒前
科研通AI5应助肖博文采纳,获得10
36秒前
39秒前
40秒前
cdercder应助小邹采纳,获得10
40秒前
科研通AI5应助小邹采纳,获得10
40秒前
虚拟的落雁完成签到 ,获得积分10
41秒前
华仔应助NXK采纳,获得10
42秒前
素简发布了新的文献求助10
44秒前
烛畔旧盟完成签到,获得积分10
44秒前
45秒前
赘婿应助科研通管家采纳,获得10
46秒前
Jasper应助科研通管家采纳,获得10
46秒前
rye227应助李思超采纳,获得240
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
zmnzmnzmn应助科研通管家采纳,获得10
46秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778099
求助须知:如何正确求助?哪些是违规求助? 3323764
关于积分的说明 10215701
捐赠科研通 3038943
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798368
科研通“疑难数据库(出版商)”最低求助积分说明 758339