亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transformer-based deep learning model for early prediction of lymph node metastasis in locally advanced gastric cancer after neoadjuvant chemotherapy using pretreatment CT images

医学 淋巴结 放射科 深度学习 化疗 淋巴 淋巴结转移 癌症 肿瘤科 转移 内科学 人工智能 病理 计算机科学
作者
Yunlin Zheng,Bingjiang Qiu,Shunli Liu,Ruirui Song,Xianqi Yang,Lei Wu,Zhihong Chen,Abudouresuli Tuersun,Xiaotang Yang,Wei Wang,Zaiyi Liu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:75: 102805-102805 被引量:14
标识
DOI:10.1016/j.eclinm.2024.102805
摘要

Summary: Background: Early prediction of lymph node status after neoadjuvant chemotherapy (NAC) facilitates promptly optimization of treatment strategies. This study aimed to develop and validate a deep learning network (DLN) using baseline computed tomography images to predict lymph node metastasis (LNM) after NAC in patients with locally advanced gastric cancer (LAGC). Methods: A total of 1205 LAGC patients were retrospectively recruited from three hospitals between January 2013 and March 2023, constituting a training cohort, an internal validation cohort, and two external validation cohorts. A transformer-based DLN was developed using 3D tumor images to predict LNM after NAC. A clinical model was constructed through multivariate logistic regression analysis as a baseline for subsequent comparisons. The performance of the models was evaluated through discrimination, calibration, and clinical applicability. Furthermore, Kaplan–Meier survival analysis was conducted to assess overall survival (OS) of LAGC patients at two follow-up centers. Findings: The DLN outperformed the clinical model and demonstrated a robust performance for predicting LNM in the training and validation cohorts, with areas under the curve (AUCs) of 0.804 (95% confidence interval [CI], 0.752–0.849), 0.748 (95% CI, 0.660–0.830), 0.788 (95% CI, 0.735–0.835), and 0.766 (95% CI, 0.717–0.814), respectively. Decision curve analysis exhibited a high net clinical benefit of the DLN. Moreover, the DLN was significantly associated with the OS of LAGC patients [Center 1: hazard ratio (HR), 1.789, P < 0.001; Center 2:HR, 1.776, P = 0.013]. Interpretation: The transformer-based DLN provides early and effective prediction of LNM and survival outcomes in LAGC patients receiving NAC, with promise to guide individualized therapy. Future prospective multicenter studies are warranted to further validate our model. Funding: National Natural Science Foundation of China (NO. 82373432, 82171923, 82202142), Project Funded by China Postdoctoral Science Foundation (NO. 2022M720857), Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (NO. U22A20345), National Science Fund for Distinguished Young Scholars of China (NO. 81925023), Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application (NO. 2022B1212010011), High-level Hospital Construction Project (NO. DFJHBF202105), Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (NO. 2024B1515020091).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
xin发布了新的文献求助10
10秒前
SUNny发布了新的文献求助10
16秒前
搬砖的化学男完成签到 ,获得积分10
23秒前
Panther完成签到,获得积分10
26秒前
sailingluwl完成签到,获得积分10
29秒前
科研通AI6应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
SUNny发布了新的文献求助10
56秒前
笑傲完成签到,获得积分10
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
杨泽宇发布了新的文献求助10
2分钟前
日常K人完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
SnowElf完成签到,获得积分10
3分钟前
3分钟前
hongye发布了新的文献求助30
3分钟前
SnowElf发布了新的文献求助10
3分钟前
3分钟前
3分钟前
orangel发布了新的文献求助10
3分钟前
hongye完成签到 ,获得积分10
3分钟前
小粒橙完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
HaoZhang发布了新的文献求助10
4分钟前
HaoZhang完成签到,获得积分20
4分钟前
尼古拉斯铁柱完成签到 ,获得积分10
4分钟前
矜持完成签到 ,获得积分10
5分钟前
Mic应助笑点低的斑马采纳,获得10
5分钟前
lixuebin发布了新的文献求助10
5分钟前
5分钟前
小白发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505