Drug Repositioning via Multi-View Representation Learning With Heterogeneous Graph Neural Network

计算机科学 人工智能 代表(政治) 人工神经网络 图形 机器学习 理论计算机科学 政治 政治学 法学
作者
Peng Li,Cheng Yang,Jiahuai Yang,Yuan Tu,Qingchun Yu,Zejun Li,Min Chen,Wei Liang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1668-1679 被引量:19
标识
DOI:10.1109/jbhi.2024.3434439
摘要

Exploring simple and efficient computational methods for drug repositioning has emerged as a popular and compelling topic in the realm of comprehensive drug development. The crux of this technology lies in identifying potential drug-disease associations, which can effectively mitigate the burdens caused by the exorbitant costs and lengthy periods of conventional drugs development. However, existing computational drug repositioning methods continue to encounter challenges in accurately predicting associations between drugs and diseases. In this paper, we propose a Multi-view Representation Learning method (MRLHGNN) with Heterogeneous Graph Neural Network for drug repositioning. This method is based on a collection of data from multiple biological entities associated with drugs or diseases. It consists of a view-specific feature aggregation module with meta-paths and auto multi-view fusion encoder. To better utilize local structural and semantic information from specific views in heterogeneous graph, MRLHGNN employs a feature aggregation model with variable-length meta-paths to expand the local receptive field. Additionally, it utilizes a transformer based semantic aggregation module to aggregate semantic features across different view-specific graphs. Finally, potential drug-disease associations are obtained through a multi-view fusion decoder with an attention mechanism. Cross-validation experiments demonstrate the effectiveness and interpretability of the MRLHGNN in comparison to nine state-of-the-art approaches. Case studies further reveal that MRLHGNN can serve as a powerful tool for drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TANG完成签到,获得积分10
2秒前
靓丽衫完成签到 ,获得积分10
4秒前
天天快乐应助林药师采纳,获得10
5秒前
5秒前
摸鱼主编magazine完成签到,获得积分10
6秒前
zcy完成签到,获得积分20
6秒前
6秒前
7秒前
8秒前
心澄宇静发布了新的文献求助10
12秒前
上官枫完成签到 ,获得积分10
14秒前
张龙雨发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
zyz1138关注了科研通微信公众号
18秒前
胡萝卜和小灰兔完成签到 ,获得积分10
18秒前
仁爱听露完成签到,获得积分10
21秒前
21秒前
22秒前
周七七发布了新的文献求助10
22秒前
wylwyl完成签到,获得积分10
23秒前
张龙雨完成签到,获得积分10
23秒前
喻鞅完成签到,获得积分0
24秒前
hah完成签到,获得积分10
25秒前
HJM发布了新的文献求助10
25秒前
26秒前
jiangqingquan完成签到,获得积分10
26秒前
29秒前
坦率的棒棒糖完成签到,获得积分10
30秒前
33秒前
啾啾发布了新的文献求助10
33秒前
往往超可爱完成签到 ,获得积分10
33秒前
34秒前
修fei完成签到 ,获得积分10
37秒前
zyz1138发布了新的文献求助10
37秒前
南苏发布了新的文献求助10
37秒前
小马甲应助周七七采纳,获得10
39秒前
池鱼完成签到,获得积分10
39秒前
假装超人会飞完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559215
求助须知:如何正确求助?哪些是违规求助? 4644402
关于积分的说明 14672398
捐赠科研通 4585605
什么是DOI,文献DOI怎么找? 2515751
邀请新用户注册赠送积分活动 1489624
关于科研通互助平台的介绍 1460563