Interpretable Machine Learning Applications: A Promising Prospect of AI for Materials

材料科学 纳米技术 人工智能 机器学习 系统工程 计算机科学 工程类
作者
Xue Jiang,Huadong Fu,Yang Bai,Lei Jiang,Hongtao Zhang,Weidong Wang,Peiwen Yun,Jingjin He,Dezhen Xue,Turab Lookman,Yanjing Su,Jianxin Xie
出处
期刊:Advanced Functional Materials [Wiley]
被引量:2
标识
DOI:10.1002/adfm.202507734
摘要

Abstract In recent years, data‐driven machine learning has significantly advanced the design of new materials and transformed the research and development landscape. However, its heavy reliance on data and the “black‐box” nature of its model‐mapping mechanisms have hindered its application in materials science research. Integrating material knowledge with machine learning to enhance model generalization and prediction accuracy remains an important objective. Such integration can deepen the understanding of material mechanisms by screening physical and chemical features to uncover explicit intrinsic relationships. Thus, it promotes the advancement of materials science, representing a promising avenue for artificial intelligence (AI) applications in this field. In this review, the algorithms, functionalities, and applications in materials underlying interpretable machine learning approaches are summarized and analyzed. The impact of composition and microstructure on material properties is explored and mathematical expressions for intrinsic relationships of materials are developed. In addition, recent advancements in data‐ and knowledge‐driven strategies for new material discovery, key property enhancement, multi‐objective design trade‐offs, and optimizing the entire preparation and processing workflow are reviewed. Finally, the future prospects and challenges associated with applying AI in materials science and its broader implications for the field are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
享音发布了新的文献求助10
2秒前
3秒前
猪肉超人菜婴蚊完成签到,获得积分10
4秒前
脑洞疼应助缚大哥采纳,获得10
6秒前
利好完成签到 ,获得积分10
6秒前
虾米君发布了新的文献求助10
7秒前
BioGO发布了新的文献求助10
8秒前
爱吃猫的鱼完成签到,获得积分10
9秒前
天天向上完成签到,获得积分10
9秒前
coli完成签到,获得积分20
10秒前
hohokuz完成签到,获得积分10
12秒前
BioGO完成签到,获得积分10
15秒前
16秒前
情怀应助唐政采纳,获得10
16秒前
如意易形完成签到,获得积分10
17秒前
老实的斌发布了新的文献求助10
21秒前
LONG完成签到 ,获得积分10
23秒前
23秒前
杨涵完成签到 ,获得积分10
24秒前
完美春天完成签到,获得积分20
25秒前
28秒前
HaohaoLi完成签到,获得积分10
28秒前
Akim应助虾米君采纳,获得10
29秒前
29秒前
重要的若发布了新的文献求助10
34秒前
流流124141完成签到,获得积分10
38秒前
快乐的柚子完成签到,获得积分10
39秒前
39秒前
41秒前
15完成签到,获得积分10
42秒前
落沧完成签到 ,获得积分10
42秒前
神经小驼发布了新的文献求助30
44秒前
372721759完成签到,获得积分10
45秒前
yalin完成签到,获得积分10
45秒前
47秒前
yexing完成签到,获得积分10
49秒前
guoguo完成签到,获得积分10
49秒前
50秒前
领导范儿应助fy采纳,获得100
53秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333317
求助须知:如何正确求助?哪些是违规求助? 3845079
关于积分的说明 12010711
捐赠科研通 3485650
什么是DOI,文献DOI怎么找? 1913339
邀请新用户注册赠送积分活动 956497
科研通“疑难数据库(出版商)”最低求助积分说明 857259