Interpretable Machine Learning Applications: A Promising Prospect of AI for Materials

材料科学 纳米技术 人工智能 机器学习 系统工程 计算机科学 工程类
作者
Xue Jiang,Huadong Fu,Yang Bai,Lei Jiang,Hongtao Zhang,Weidong Wang,Peiwen Yun,Jingjin He,Dezhen Xue,Turab Lookman,Yanjing Su,Jianxin Xie
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (41) 被引量:11
标识
DOI:10.1002/adfm.202507734
摘要

Abstract In recent years, data‐driven machine learning has significantly advanced the design of new materials and transformed the research and development landscape. However, its heavy reliance on data and the “black‐box” nature of its model‐mapping mechanisms have hindered its application in materials science research. Integrating material knowledge with machine learning to enhance model generalization and prediction accuracy remains an important objective. Such integration can deepen the understanding of material mechanisms by screening physical and chemical features to uncover explicit intrinsic relationships. Thus, it promotes the advancement of materials science, representing a promising avenue for artificial intelligence (AI) applications in this field. In this review, the algorithms, functionalities, and applications in materials underlying interpretable machine learning approaches are summarized and analyzed. The impact of composition and microstructure on material properties is explored and mathematical expressions for intrinsic relationships of materials are developed. In addition, recent advancements in data‐ and knowledge‐driven strategies for new material discovery, key property enhancement, multi‐objective design trade‐offs, and optimizing the entire preparation and processing workflow are reviewed. Finally, the future prospects and challenges associated with applying AI in materials science and its broader implications for the field are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
就这样完成签到 ,获得积分10
1秒前
胖墩儿驾到完成签到 ,获得积分10
1秒前
亚婷儿完成签到,获得积分10
2秒前
gmy发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
R沫完成签到,获得积分10
3秒前
姁姁完成签到,获得积分10
3秒前
4秒前
5秒前
小二郎应助邱近实采纳,获得10
5秒前
李岩完成签到,获得积分20
5秒前
坦率灵槐发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
orixero应助等待的之瑶采纳,获得30
9秒前
英吉利25发布了新的文献求助10
9秒前
故槿发布了新的文献求助10
9秒前
9秒前
yy关注了科研通微信公众号
10秒前
所所应助sy采纳,获得10
10秒前
11秒前
11秒前
花花发布了新的文献求助10
11秒前
壮观乘云发布了新的文献求助10
12秒前
12秒前
万能图书馆应助哈哈哈哈采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
星河发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939