亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting treatment response to systemic therapy in advanced gallbladder cancer using multiphase enhanced CT images

医学 逻辑回归 胆囊癌 内科学 神经组阅片室 介入放射学 全身疗法 临床试验 肿瘤科 放射科 癌症 乳腺癌 神经学 精神科
作者
Ji Wu,Zhigang Zheng,Jian Li,Xiping Shen,Bo Huang
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-025-11645-7
摘要

Abstract Background Accurate estimation of treatment response can help clinicians identify patients who would potentially benefit from systemic therapy. This study aimed to develop and externally validate a model for predicting treatment response to systemic therapy in advanced gallbladder cancer (GBC). Methods We recruited 399 eligible GBC patients across four institutions. Multivariable logistic regression analysis was performed to identify independent clinical factors related to therapeutic efficacy. This deep learning (DL) radiomics signature was developed for predicting treatment response using multiphase enhanced CT images. Then, the DL radiomic-clinical (DLRSC) model was built by combining the DL signature and significant clinical factors, and its predictive performance was evaluated using area under the curve (AUC). Gradient-weighted class activation mapping analysis was performed to help clinicians better understand the predictive results. Furthermore, patients were stratified into low- and high-score groups by the DLRSC model. The progression-free survival (PFS) and overall survival (OS) between the two different groups were compared. Results Multivariable analysis revealed that tumor size was a significant predictor of efficacy. The DLRSC model showed great predictive performance, with AUCs of 0.86 (95% CI, 0.82–0.89) and 0.84 (95% CI, 0.80–0.87) in the internal and external test datasets, respectively. This model showed great discrimination, calibration, and clinical utility. Moreover, Kaplan–Meier survival analysis revealed that low-score group patients who were insensitive to systemic therapy predicted by the DLRSC model had worse PFS and OS. Conclusion The DLRSC model allows for predicting treatment response in advanced GBC patients receiving systemic therapy. The survival benefit provided by the DLRSC model was also assessed. Key Points Question No effective tools exist for identifying patients who would potentially benefit from systemic therapy in clinical practice. Findings Our combined model allows for predicting treatment response to systemic therapy in advanced gallbladder cancer. Clinical relevance With the help of this model, clinicians could inform patients of the risk of potential ineffective treatment. Such a strategy can reduce unnecessary adverse events and effectively help reallocate societal healthcare resources. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwz626完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
24秒前
null应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
Artin发布了新的文献求助200
49秒前
kuoping完成签到,获得积分0
1分钟前
1分钟前
Benhnhk21发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lwstardust完成签到,获得积分10
1分钟前
lwstardust发布了新的文献求助10
1分钟前
1分钟前
1分钟前
草木完成签到 ,获得积分10
1分钟前
Benhnhk21发布了新的文献求助10
2分钟前
YJX完成签到,获得积分10
2分钟前
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Artin完成签到,获得积分10
2分钟前
Benhnhk21完成签到,获得积分10
3分钟前
Tingjiang发布了新的文献求助30
3分钟前
科研通AI5应助两两采纳,获得10
3分钟前
子春完成签到 ,获得积分10
3分钟前
3分钟前
两两发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
烟花应助科研通管家采纳,获得10
4分钟前
两两完成签到,获得积分10
4分钟前
小二郎应助HXXXY采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
HXXXY发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4304401
求助须知:如何正确求助?哪些是违规求助? 3827439
关于积分的说明 11979601
捐赠科研通 3468428
什么是DOI,文献DOI怎么找? 1902215
邀请新用户注册赠送积分活动 949794
科研通“疑难数据库(出版商)”最低求助积分说明 851781