CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides

序列(生物学) 计算生物学 计算机科学 细胞 化学 生物系统 人工智能 生物 生物化学
作者
Qiufen Chen,Yuewei Zhang,Jiali Gao,Jun Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00199
摘要

Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六月六发布了新的文献求助10
刚刚
俊逸沛菡完成签到 ,获得积分10
2秒前
2秒前
六月六完成签到,获得积分10
5秒前
爆米花应助hhhhh采纳,获得30
6秒前
tdtk发布了新的文献求助10
7秒前
fxy完成签到 ,获得积分10
10秒前
11秒前
酒菜盒子发布了新的文献求助10
15秒前
19秒前
顾矜应助tdtk采纳,获得10
20秒前
酒菜盒子完成签到,获得积分10
23秒前
皮皮发布了新的文献求助10
23秒前
小糊涂仙儿完成签到 ,获得积分10
26秒前
神说应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
CWNU_HAN应助科研通管家采纳,获得30
31秒前
大个应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
32秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
神说应助科研通管家采纳,获得10
32秒前
荣冥幽应助科研通管家采纳,获得10
32秒前
32秒前
情怀应助科研通管家采纳,获得10
32秒前
32秒前
神说应助科研通管家采纳,获得10
32秒前
32秒前
HY完成签到,获得积分10
33秒前
33秒前
34秒前
佳佳完成签到,获得积分20
34秒前
pluto应助我的的小猪会飞采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339