Grey wolf optimizer with self-repulsion strategy for feature selection

选择(遗传算法) 计算机科学 特征选择 人工智能 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Yu‐Feng Wang,Yanyan Yin,Hang Zhao,Jinxuan Liu,Chunyu Xu,Wenyong Dong
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-97224-8
摘要

Feature selection is one of the most critical steps in big data analysis. Accurately extracting correct features from massive data can effectively improve the accuracy of big data processing algorithms. However, traditional grey wolf optimizer (GWO) algorithms often suffer from slow convergence and a tendency to fall into local optima, limiting their effectiveness in high-dimensional feature selection tasks. To address these limitations, we propose a novel feature selection algorithm called grey wolf optimizer with self-repulsion strategy (GWO-SRS). In GWO-SRS, the hierarchical structure of the wolf pack is flattened to enable rapid transmission of commands from the alpha wolf to each member, thereby accelerating convergence. Additionally, two distinct learning strategies are employed: the self-repulsion learning strategy for the alpha wolf and the pack learning strategy based on the predatory behavior of the alpha wolf, facilitating rapid self-learning for both the alpha wolf and the pack. These improvements effectively mitigate the weaknesses of traditional GWO, such as premature convergence and limited exploration capability. Finally, we conduct a comparative experimental analysis on the UCI test dataset using five relevant feature selection algorithms. The results demonstrate that the average classification error of GWO-SRS is reduced by approximately 15% compared to related algorithms, while utilizing 20% fewer features. This work highlights the need to address the inherent limitations of GWO and provides a robust solution to complex feature selection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小斌发布了新的文献求助10
1秒前
慕容友梅发布了新的文献求助10
4秒前
yangkang完成签到,获得积分10
4秒前
rainy关注了科研通微信公众号
6秒前
潇洒的半梅完成签到,获得积分10
6秒前
飞扬完成签到,获得积分10
7秒前
monicaaaa完成签到,获得积分10
8秒前
ssss完成签到,获得积分10
8秒前
CAOHOU应助小二采纳,获得10
10秒前
烟花应助JM采纳,获得10
12秒前
Owen应助123采纳,获得10
14秒前
14秒前
机灵笑萍完成签到,获得积分10
15秒前
Wang完成签到,获得积分10
16秒前
tomato完成签到 ,获得积分10
16秒前
Sean完成签到,获得积分10
17秒前
52hezi完成签到,获得积分10
18秒前
似水流年发布了新的文献求助30
18秒前
19秒前
19秒前
chase发布了新的文献求助10
23秒前
23秒前
24秒前
兔兔发布了新的文献求助10
24秒前
fanyueyue应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
不安青牛应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
不安青牛应助科研通管家采纳,获得10
26秒前
蛇從革应助科研通管家采纳,获得50
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
kk99123应助科研通管家采纳,获得10
26秒前
不安青牛应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
不安青牛应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
不安青牛应助科研通管家采纳,获得10
26秒前
彭于彦祖应助科研通管家采纳,获得30
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
不安青牛应助科研通管家采纳,获得10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120913
求助须知:如何正确求助?哪些是违规求助? 3659059
关于积分的说明 11582695
捐赠科研通 3360528
什么是DOI,文献DOI怎么找? 1846507
邀请新用户注册赠送积分活动 911198
科研通“疑难数据库(出版商)”最低求助积分说明 827362