Nomogram integrating clinical-radiological and radiomics features for differentiating invasive from non-invasive pulmonary adenocarcinomas presenting as ground-glass nodules

无线电技术 列线图 医学 肺腺癌 病理 放射科 磨玻璃样改变 放射性武器 腺癌 癌症 肿瘤科 内科学
作者
Ning Dong,Sirong Wei,Lei Zheng,Delong Huang,Guowei Zhang,Yunxin Li,Hu Zhang,Aijie Wang,Ranran Huang,Xinyao Zhao,Peng Liang
出处
期刊:American Journal of Cancer Research [e-Century Publishing Corporation]
卷期号:15 (2): 797-810
标识
DOI:10.62347/aoan9966
摘要

To construct a nomogram incorporating clinical-radiological and radiomics features from computed tomography (CT) for distinguishing invasive adenocarcinoma (IAC) from adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) in ground-glass nodules (GGNs). This retrospective study included 473 GGN patients with postoperative pathological confirmation of AIS, MIA, or IAC. The training set comprised 257 patients from Yantaishan Hospital, while the test set, used for external validation, included 216 patients from the Affiliated Hospital of Binzhou Medical College. Radiomics features were selected, and a radiomics model was constructed using least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum relevance (mRMR) methods. A clinical-radiological model was developed using univariate and multivariate logistic regression. The nomogram was generated by combining the two models. Its performance was evaluated via receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis (DCA). The radiomics model included 11 features, while the clinical-radiological model incorporated lobulation, age, and long diameter. The nomogram outperformed both individual models in terms of accuracy and area under the curve (AUC) in both the training and test sets. Calibration curve analysis confirmed good consistency between actual and predicted outcomes, and DCA indicated the nomogram's clinical utility. The nomogram is a non-invasive, accurate tool for preoperative differentiation of GGN types, providing valuable guidance for clinicians in treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助研狗采纳,获得10
刚刚
彭于晏应助read采纳,获得10
1秒前
hujie完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
瞿选葵完成签到 ,获得积分10
3秒前
小趴菜发布了新的文献求助10
4秒前
香妃发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
烟花应助dadada采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
和光同尘完成签到,获得积分10
7秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
learner1994发布了新的文献求助10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
打打应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
10秒前
时光路人发布了新的文献求助10
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中学生创造性思维能力自评测验的编制 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248020
求助须知:如何正确求助?哪些是违规求助? 3781179
关于积分的说明 11871352
捐赠科研通 3434030
什么是DOI,文献DOI怎么找? 1884739
邀请新用户注册赠送积分活动 936342
科研通“疑难数据库(出版商)”最低求助积分说明 842268