Unified Approach for Estimating Axial-Load Capacity of Concrete-Filled Double-Skin Steel Tubular Columns of Multiple Shapes Using Nonlinear FE Models and Artificial Neural Networks

结构工程 承载力 人工神经网络 平方(代数) 非线性系统 均方误差 一般化 有限元法 工程类 材料科学 数学 几何学 计算机科学 数学分析 统计 人工智能 物理 量子力学
作者
Mohammad Rafiq Joo,Fayaz A. Sofi
出处
期刊:Practice Periodical on Structural Design and Construction [American Society of Civil Engineers]
卷期号:28 (2) 被引量:10
标识
DOI:10.1061/(asce)sc.1943-5576.0000752
摘要

Concrete-filled double-skin steel tubular (CFDST) columns are a modern generation of composite columns optimized for a high strength-to-weight ratio with concrete sandwiched in the annulus between the inner and outer steel-tube skins. The cross-sectional shape of steel tubes can influence the confined concrete behavior and thus the axial load-bearing capacity of CFDST columns. This study proposed a unified approach using artificial neural networks (ANNs) to predict the refined axial load-bearing capacity of CFDST columns of multiple shapes based on combinations of circular and square steel tubes, i.e., circle-circle, circle-square, square-square, and square-circle forms. A total of 233 CFDST columns (82 tested specimens and 151 hypothetical columns) were used to formulate a detailed case study. The hypothetical columns were generated using calibrated nonlinear finite element modeling. Then, ANNs were trained using a subset of these hypothetical columns to map their geometric and material properties with the ultimate axial-load capacity. The 133 CFDST columns (i.e., 82 documented tests and the remaining 51 hypothetical columns) were finally used to check the trained ANN's prediction accuracy and generalization ability. The analytical formulation based on the optimized ANN architecture showed similar axial-load capacity prediction accuracy (about 8% mean absolute error) across all cross-sectional shapes of the CFDST columns in the testing set. Lastly, for the practical utility of the ANN-based model, prediction adjustment factors were proposed in this study for making conservative axial load-bearing capacity estimations within a targeted error margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingbing发布了新的文献求助10
1秒前
骆马湖完成签到,获得积分10
2秒前
3秒前
山沟沟完成签到,获得积分10
3秒前
科研通AI6应助出水的芙蓉采纳,获得10
4秒前
bkagyin应助luoshiyi采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
10秒前
科研通AI6应助yhmi0809采纳,获得10
11秒前
11秒前
英姑应助Wxj246801采纳,获得10
13秒前
酷波er应助波尔金诺的秋采纳,获得10
16秒前
周周发布了新的文献求助10
17秒前
大模型应助郭郭采纳,获得10
17秒前
ced完成签到,获得积分10
17秒前
烟花应助科研通管家采纳,获得10
18秒前
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
愿好应助科研通管家采纳,获得10
18秒前
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
不配.应助科研通管家采纳,获得50
18秒前
18秒前
18秒前
18秒前
科研通AI6应助Viva采纳,获得30
20秒前
21秒前
22秒前
武装大脑完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
25秒前
SciGPT应助vergegung采纳,获得10
25秒前
27秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4291290
求助须知:如何正确求助?哪些是违规求助? 3818381
关于积分的说明 11957449
捐赠科研通 3461841
什么是DOI,文献DOI怎么找? 1898801
邀请新用户注册赠送积分活动 947325
科研通“疑难数据库(出版商)”最低求助积分说明 850058