Improved Palliative Care Practices Through Machine-Learning Prediction of 90-Day Risk of Mortality Following Hospitalization

软件部署 机器学习 人工智能 缓和医疗 医学 医疗保健 人口 医疗急救 计算机科学 护理部 经济增长 环境卫生 操作系统 经济
作者
Thein H. Oo,Oscar C. Marroquin,Jeffrey McKibben,Jane O. Schell,Robert M. Arnold,Kevin E. Kip
出处
期刊:NEJM catalyst innovations in care delivery [New England Journal of Medicine]
卷期号:4 (1) 被引量:8
标识
DOI:10.1056/cat.22.0214
摘要

SummaryPatients and families rely on clinicians to provide candid, transparent, and accurate data-driven prognostic information to make informed, value-based decisions about serious illness. In this realm, there has been a proliferation of the use of machine-learning algorithms within health care systems because of an overall desire to develop and validate predictive models for short- and long-term mortality and to provide optimal patient care across a range of modifiable conditions and clinical populations. In this study, the authors describe the use of machine-learning algorithms that are embedded into the University of Pittsburgh Medical Center (UPMC) electronic health record system to generate 90-day mortality risk classifications for hospitalized patients. The system automatically triggers clinician alerts for intermediate- and high-risk groups of patients so that the care team can provide goals-of-care (GOC) conversations and palliative care consultations. The machine-learning study population included 611,543 unique patients 18 years of age and older hospitalized in the UPMC system between January 1, 2015, and December 31, 2019. The development and validation of the predictive model for the 90-day risk of mortality from the date of hospital admission included iterative engagement with UPMC clinicians and health system stakeholders and gradient boosting decision tree–based supervised machine learning. Prior to deployment in July 2021, an average of 78 GOC conversations took place each month with patients deemed to be at moderate or high risk for 90-day mortality. After deployment, that number more than doubled to an average of 166 per month and has been sustained for more than a year. The authors also provide analytical and operational recommendations based on their approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
marui发布了新的文献求助10
刚刚
岚落发布了新的文献求助10
刚刚
隐形曼青应助默默筮采纳,获得10
1秒前
1秒前
instinct完成签到,获得积分10
2秒前
2秒前
2秒前
葱葱花卷完成签到 ,获得积分10
3秒前
zakarya完成签到,获得积分10
3秒前
4秒前
Humble发布了新的文献求助10
4秒前
爱马仕完成签到,获得积分10
4秒前
vivvy发布了新的文献求助10
5秒前
柚哦完成签到,获得积分10
5秒前
llll发布了新的文献求助10
5秒前
5秒前
核桃发布了新的文献求助30
5秒前
鱼鱼完成签到,获得积分10
5秒前
大个应助wassermelonen采纳,获得10
7秒前
zakarya发布了新的文献求助10
7秒前
cghfgbnvnvgx完成签到,获得积分20
7秒前
善学以致用应助nannan采纳,获得10
8秒前
赘婿应助阔达的惠采纳,获得10
8秒前
伶俐的白枫完成签到,获得积分10
9秒前
哈哈小妖怪完成签到,获得积分10
9秒前
10秒前
安安完成签到,获得积分10
10秒前
qsh完成签到 ,获得积分10
12秒前
雪晨发布了新的文献求助10
12秒前
rock发布了新的文献求助10
12秒前
Imstemcell完成签到,获得积分10
12秒前
nichts完成签到 ,获得积分10
12秒前
CodeCraft应助123采纳,获得10
13秒前
mage完成签到,获得积分10
13秒前
赘婿应助Aaron_Chia采纳,获得10
14秒前
14秒前
张女士完成签到,获得积分20
14秒前
胡十一完成签到,获得积分10
14秒前
王xingxing完成签到 ,获得积分10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340179
求助须知:如何正确求助?哪些是违规求助? 4476788
关于积分的说明 13932742
捐赠科研通 4372525
什么是DOI,文献DOI怎么找? 2402437
邀请新用户注册赠送积分活动 1395299
关于科研通互助平台的介绍 1367376