Deep Reinforcement Learning-Based Task Offloading for Parked Vehicle Cooperation in Vehicular Edge Computing

计算机科学 强化学习 任务(项目管理) 边缘计算 服务器 GSM演进的增强数据速率 经济短缺 服务质量 分布式计算 架空(工程) 延迟(音频) 实时计算 计算机网络 人工智能 操作系统 电信 哲学 经济 管理 政府(语言学) 语言学
作者
Hong Yan Zhao,Jiwei Hua,Zusheng Zhang,Jinqi Zhu
出处
期刊:Mobile Information Systems [IOS Press]
卷期号:2022: 1-13 被引量:2
标识
DOI:10.1155/2022/9218266
摘要

Vehicular edge computing (VEC) has greatly enhanced the quality of vehicle service with low latency and high reliability. However, in some areas not covered by roadside infrastructures or in cases when the infrastructures are damaged or fail, the offloaded tasks cannot have the chance to be performed. Even in the areas deployed with infrastructures, when a large number of offloaded tasks are generated, the edge servers may not be capable of processing them in time, owing to their computing resources constraint. Based on the above observations, we proposed the idea of parked vehicle cooperation in VEC, which uses roadside parked vehicles with underutilized computational resources to cooperate with each other to perform the compute-intensive tasks. Our approach aims to overcome the challenge brought by infrastructure lacking or failure and make up for the shortage of computing resources in VEC. In our approach, firstly, the roadside parked vehicles are managed as different parking clusters. Then, the optimal amount of resources required for each offloaded task is analyzed. Furthermore, a task offloading algorithm based on deep reinforcement learning (DRL) is proposed to minimize the total cost, which is composed of the task execution delay and the energy consumption overhead of the parked vehicles for executing the task. A large number of simulation results show that, compared with other algorithms, our approach not only has the highest task completion execution successful rate, but also has the lowest task execution cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DHY发布了新的文献求助10
1秒前
科目三应助GooJohn采纳,获得10
1秒前
在水一方应助苹果追命采纳,获得10
1秒前
1秒前
柯亦云应助喜欢玩辅助采纳,获得20
1秒前
英姑应助古月博士采纳,获得10
2秒前
2秒前
丘比特应助kkkkkkk采纳,获得10
2秒前
852应助weifengzhong采纳,获得10
3秒前
小蘑菇应助zwenng采纳,获得10
4秒前
5秒前
高贵的青柏完成签到 ,获得积分10
5秒前
5秒前
亿篇文献发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
huanxian1995发布了新的文献求助20
7秒前
研友_LJGpan完成签到,获得积分10
8秒前
善良安蕾发布了新的文献求助10
8秒前
橘子完成签到,获得积分10
8秒前
听风完成签到,获得积分10
9秒前
Ava应助xcf6653采纳,获得10
9秒前
10秒前
明理乐珍完成签到,获得积分20
10秒前
JamesPei应助DavidWebb采纳,获得10
10秒前
JOE68完成签到,获得积分10
10秒前
丙子哥完成签到,获得积分10
11秒前
信仰g发布了新的文献求助10
12秒前
章早立发布了新的文献求助10
12秒前
12秒前
共享精神应助满意的山水采纳,获得10
12秒前
13秒前
悄悄发布了新的文献求助10
13秒前
ke可关注了科研通微信公众号
13秒前
Ava应助派大星不科研采纳,获得10
13秒前
呆萌小鸭子完成签到 ,获得积分20
13秒前
sunnyqqz发布了新的文献求助10
13秒前
14秒前
脑洞疼应助aaaa采纳,获得10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050933
求助须知:如何正确求助?哪些是违规求助? 3589169
关于积分的说明 11405809
捐赠科研通 3315403
什么是DOI,文献DOI怎么找? 1823762
邀请新用户注册赠送积分活动 895628
科研通“疑难数据库(出版商)”最低求助积分说明 816924