尺度不变特征变换
人工智能
模式识别(心理学)
特征(语言学)
主成分分析
直方图
计算机科学
计算机视觉
突出
特征提取
图像(数学)
代表(政治)
匹配(统计)
特征检测(计算机视觉)
数学
图像处理
法学
统计
哲学
政治
语言学
政治学
作者
Ke Yan,Rahul Sukthankar
标识
DOI:10.1109/cvpr.2004.1315206
摘要
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid (June 2003) recently evaluated a variety of approaches and identified the SIFT [D. G. Lowe, 1999] algorithm as being the most resistant to common image deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply principal components analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCA-based local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image retrieval application results in increased accuracy and faster matching.
科研通智能强力驱动
Strongly Powered by AbleSci AI