Microscale impeller pump for recirculating flow in organs-on-chip and microreactors

叶轮 微尺度化学 微流控 微通道 机械工程 计算流体力学 剪应力 滑移系数 实验室晶片 材料科学 工程类 纳米技术 航空航天工程 数学 数学教育 复合材料
作者
Sophie R. Cook,Hannah B. Musgrove,Amy L. Throckmorton,Rebecca R. Pompano
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (3): 605-620 被引量:12
标识
DOI:10.1039/d1lc01081f
摘要

Fluid flow is an integral part of microfluidic and organ-on-chip technology, ideally providing biomimetic fluid, cell, and nutrient exchange as well as physiological or pathological shear stress. Currently, many of the pumps that actively perfuse fluid at biomimetic flow rates are incompatible with use inside cell culture incubators, require many tubing connections, or are too large to run many devices in a confined space. To address these issues, we developed a user-friendly impeller pump that uses a 3D-printed device and impeller to recirculate fluid and cells on-chip. Impeller rotation was driven by a rotating magnetic field generated by magnets mounted on a computer fan; this pump platform required no tubing connections and could accommodate up to 36 devices at once in a standard cell culture incubator. A computational model was used to predict shear stress, velocity, and changes in pressure throughout the device. The impeller pump generated biomimetic fluid velocities (50-6400 μm s-1) controllable by tuning channel and inlet dimensions and the rotational speed of the impeller, which were comparable to the order of magnitude of the velocities predicted by the computational model. Predicted shear stress was in the physiological range throughout the microchannel and over the majority of the impeller. The impeller pump successfully recirculated primary murine splenocytes for 1 h and Jurkat T cells for 24 h with no impact on cell viability, showing the impeller pump's feasibility for white blood cell recirculation on-chip. In the future, we envision that this pump will be integrated into single- or multi-tissue platforms to study communication between organs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc完成签到,获得积分10
4秒前
chenyu完成签到,获得积分10
5秒前
9秒前
Y先生的粉完成签到,获得积分10
12秒前
14秒前
rocky15应助细腻乐珍采纳,获得30
16秒前
神勇中道发布了新的文献求助10
20秒前
Chochee完成签到,获得积分10
20秒前
田様应助虚幻德地采纳,获得10
21秒前
lxz131发布了新的文献求助10
24秒前
28秒前
意绵雅风完成签到,获得积分10
31秒前
36秒前
37秒前
MMrian发布了新的文献求助10
40秒前
41秒前
辛勤夜柳发布了新的文献求助10
42秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
李爱国应助科研通管家采纳,获得10
43秒前
lemon应助科研通管家采纳,获得10
43秒前
领导范儿应助科研通管家采纳,获得10
44秒前
CipherSage应助科研通管家采纳,获得10
44秒前
星辰大海应助科研通管家采纳,获得10
44秒前
nano完成签到 ,获得积分10
45秒前
刘佳琦19947完成签到,获得积分20
45秒前
小二郎应助fighting采纳,获得10
46秒前
意绵雅风发布了新的文献求助10
46秒前
49秒前
等待的夏云应助牧青采纳,获得10
49秒前
50秒前
酷波er应助fangzhang采纳,获得10
51秒前
共享精神应助lxz131采纳,获得10
51秒前
郑洋完成签到 ,获得积分10
51秒前
zz0429完成签到 ,获得积分10
52秒前
55秒前
55秒前
56秒前
戈天奇发布了新的文献求助10
58秒前
柚子萌发布了新的文献求助10
1分钟前
Tracer发布了新的文献求助10
1分钟前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2547193
求助须知:如何正确求助?哪些是违规求助? 2176129
关于积分的说明 5602441
捐赠科研通 1896879
什么是DOI,文献DOI怎么找? 946488
版权声明 565383
科研通“疑难数据库(出版商)”最低求助积分说明 503714