Diagnosis of Suspected Scaphoid Fractures

医学 舟状骨骨折 骨不连 射线照相术 人工智能 放射科 外科 计算机科学
作者
Paul Stirling,Jason Strelzow,Job N. Doornberg,Timothy O. White,Margaret M. McQueen,Andrew D. Duckworth
出处
期刊:Jbjs reviews [Lippincott Williams & Wilkins]
卷期号:9 (12) 被引量:13
标识
DOI:10.2106/jbjs.rvw.20.00247
摘要

Suspected scaphoid fractures are a diagnostic and therapeutic challenge despite the advances in knowledge regarding these injuries and imaging techniques. The risks and restrictions of routine immobilization as well as the restriction of activities in a young and active population must be weighed against the risks of nonunion that are associated with a missed fracture.The prevalence of true fractures among suspected fractures is low. This greatly reduces the statistical probability that a positive diagnostic test will correspond with a true fracture, reducing the positive predictive value of an investigation.There is no consensus reference standard for a true fracture; therefore, alternative statistical methods for calculating sensitivity, specificity, and positive and negative predictive values are required.Clinical prediction rules that incorporate a set of demographic and clinical factors may allow stratification of secondary imaging, which, in turn, could increase the pretest probability of a scaphoid fracture and improve the diagnostic performance of the sophisticated radiographic investigations that are available.Machine-learning-derived probability calculators may augment risk stratification and can improve through retraining, although these theoretical benefits need further prospective evaluation.Convolutional neural networks (CNNs) are a form of artificial intelligence that have demonstrated great promise in the recognition of scaphoid fractures on radiographs. However, in the more challenging diagnostic scenario of a suspected or so-called "clinical" scaphoid fracture, CNNs have not yet proven superior to a diagnosis that has been made by an experienced surgeon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小罗咩咩完成签到,获得积分10
1秒前
Mida发布了新的文献求助10
2秒前
重要铃铛完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
领导范儿应助Sandstorm采纳,获得10
4秒前
13881752735发布了新的文献求助30
5秒前
dummer完成签到,获得积分10
5秒前
汤万天完成签到,获得积分10
5秒前
5秒前
三岁发布了新的文献求助10
5秒前
李健应助ww采纳,获得10
6秒前
李健应助骑驴找马采纳,获得10
6秒前
省委一把手完成签到,获得积分10
6秒前
暮霭沉沉应助搬砖feng采纳,获得10
6秒前
6秒前
汉堡包应助超级的一斩采纳,获得10
8秒前
大个应助执着的忆雪采纳,获得10
8秒前
jenningseastera应助FinitePast采纳,获得10
9秒前
9秒前
9秒前
赘婿应助不忘初心采纳,获得10
10秒前
10秒前
依依完成签到,获得积分10
11秒前
11秒前
11秒前
Hyan发布了新的文献求助10
13秒前
dummer发布了新的文献求助10
14秒前
15秒前
mm发布了新的文献求助10
15秒前
smin发布了新的文献求助10
15秒前
tgh发布了新的文献求助10
17秒前
刘qingyue完成签到 ,获得积分10
17秒前
香瓜多多完成签到,获得积分20
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
21秒前
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4252936
求助须知:如何正确求助?哪些是违规求助? 3786238
关于积分的说明 11883541
捐赠科研通 3436905
什么是DOI,文献DOI怎么找? 1886164
邀请新用户注册赠送积分活动 937562
科研通“疑难数据库(出版商)”最低求助积分说明 843221