Optimized neural network for daily-scale ozone prediction based on transfer learning

过度拟合 人工神经网络 可预测性 均方误差 环境科学 计算机科学 污染物 气象学 臭氧 学习迁移 风速 预测技巧 机器学习 人工智能 统计 数学 化学 地理 有机化学
作者
Wei Ma,Zibing Yuan,Alexis K.H. Lau,Long Wang,Chenghao Liao,Yongbo Zhang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:827: 154279-154279 被引量:24
标识
DOI:10.1016/j.scitotenv.2022.154279
摘要

Tropospheric ozone (O3) pollution is worsening in China, and an accurate forecast is a prerequisite to lower the O3 peak level. In recent years, machine learning techniques have attracted increasing attention in O3 prediction owing to their high efficiency and simple operation. However, the accuracy of predicting the daily O3 level is low. This study proposed a novel model by coupling long short-term memory neural network with transfer learning (TL-LSTM), with meteorology and pollutant concentration information as the model input. L2 regularization was applied to reduce the risk of overfitting and to improve the accuracy and generalization ability of the model prediction. Our results indicated that by transferring the knowledge in the model configuration from the hourly LSTM module, TL-LSTM greatly improves the predictability of the daily maximum 8 h average (MDA8) of O3 in Hong Kong. The coefficient of determination (R2) increased from 0.684 to 0.783 and the mean square error (MSE) reduced from 1.36 × 10-2 to 1.05 × 10-2. Furthermore, R2 and MSE were the highest in summer, indicating an under-prediction of peak O3 levels. This was a result of the limited number of high O3 days, which did not provide sufficient knowledge for the model to make an accurate prediction. Sobol analysis indicated that wind speed was the most sensitive factor in O3 prediction, largely due to the development of land-sea breeze circulation which effectively traps pollutants and expedites O3 formation. The results clearly demonstrate the effectiveness of the TL-LSTM in predicting the daily O3 concentration in Hong Kong. Thus, TL-LSTM can be promulgated into other photochemically active regions to assist in O3 pollution forecasting and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guyuangyy完成签到,获得积分10
1秒前
HHH发布了新的文献求助10
1秒前
李照慧发布了新的文献求助10
1秒前
MADAO完成签到,获得积分10
1秒前
活力的听露完成签到 ,获得积分10
2秒前
斯文花瓣发布了新的文献求助10
2秒前
2秒前
qwer完成签到,获得积分10
2秒前
斯文败类应助小肆采纳,获得10
2秒前
小宋应助jjjh采纳,获得10
3秒前
3秒前
啦啦啦发布了新的文献求助10
3秒前
冯123完成签到,获得积分10
3秒前
卡卡西应助周周采纳,获得20
3秒前
sunny心晴完成签到 ,获得积分10
3秒前
4秒前
领导范儿应助双马尾小男生采纳,获得100
5秒前
yyy完成签到,获得积分10
5秒前
神哭小斧完成签到,获得积分20
5秒前
南栀完成签到 ,获得积分10
5秒前
5秒前
YY完成签到,获得积分10
5秒前
5秒前
岳小龙发布了新的文献求助30
6秒前
xiha西希完成签到,获得积分10
8秒前
十一发布了新的文献求助10
8秒前
Lucas应助迷路的墨镜采纳,获得10
8秒前
8秒前
8秒前
南宫丽完成签到 ,获得积分10
8秒前
8秒前
如约而至完成签到 ,获得积分10
8秒前
爽o完成签到 ,获得积分10
9秒前
9秒前
9秒前
赘婿应助白桃味的夏采纳,获得10
9秒前
10秒前
李照慧完成签到,获得积分20
10秒前
小太阳完成签到,获得积分10
10秒前
zzzzz发布了新的文献求助10
10秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816509
求助须知:如何正确求助?哪些是违规求助? 3359946
关于积分的说明 10406042
捐赠科研通 3078020
什么是DOI,文献DOI怎么找? 1690472
邀请新用户注册赠送积分活动 813786
科研通“疑难数据库(出版商)”最低求助积分说明 767857