Numerical and Experimental Studies of Transpiration Cooling Film Effectiveness over Porous Materials

冷却液 材料科学 多孔介质 多孔性 热流密度 复合材料 热力学 传热 机械 传热系数 水冷 物理
作者
Mathieu Hinse,Kivanç Yildiz,P. Richer,Bertrand Jodoin,Mohsen Broumand,Sean Yun,Zekai Hong
出处
期刊:Journal of Thermophysics and Heat Transfer [American Institute of Aeronautics and Astronautics]
卷期号:36 (4): 803-817 被引量:10
标识
DOI:10.2514/1.t6510
摘要

Comprehensive experimental and numerical studies were performed to determine cooling film effectiveness of transpiration cooling over porous materials. The cooling film effectiveness was evaluated experimentally using pressure-sensitive paint by invoking heat/mass transfer analogy over the surface of the porous samples. It was found that transpiration cooling can reduce total surface heat flux by two to three times and provide solid surface cooling film effectiveness on average 40% higher than the state-of-the-art multihole effusion cooling. This improvement increases to 200% when high coolant flow rates are used due to effusion cooling film liftoff. Numerical simulations allowed detailed investigations of the flow evolution in the porous media and its ability to create a thermal protection film. Modeling results revealed slight lateral motion of the flow inside the porous media in the same direction as the main flow. This was attributed to the viscous effect of the channel flow and low flow resistance of the porous samples. As a result, a larger portion of coolant exits the porous transpiration cooling surface toward the trailing edge of the test coupon, creating a nonuniform cooling film over the test samples surface. The model also suggested that cooling film effectiveness is a function of the porous media physical properties (permeability and inertia coefficient). In contrast to the reduction in cooling film effectiveness in multihole effusion cooling resulting from cooling film liftoff at high coolant flow rates, this study indicates that high coolant flow rates enhance cooling film protection in transpiration cooling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助huang采纳,获得10
刚刚
xxx完成签到,获得积分10
2秒前
大个应助DoctorX采纳,获得10
2秒前
xiaoli发布了新的文献求助10
5秒前
情怀应助xxx采纳,获得10
6秒前
rose123456完成签到,获得积分20
6秒前
昏睡的静丹完成签到,获得积分10
8秒前
钟秋霞完成签到,获得积分10
9秒前
11秒前
SLJK发布了新的文献求助10
11秒前
11秒前
脑洞疼应助郁奥古采纳,获得10
12秒前
scott_zip完成签到 ,获得积分10
12秒前
13秒前
wanci应助damahayu采纳,获得10
14秒前
传奇3应助十先生的猫采纳,获得10
15秒前
123发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
不包含特殊字符完成签到,获得积分10
19秒前
小赵发布了新的文献求助10
20秒前
23秒前
柒咩咩发布了新的文献求助10
24秒前
24秒前
24秒前
123完成签到,获得积分10
25秒前
25秒前
tw0125完成签到 ,获得积分10
26秒前
bkagyin应助我我我采纳,获得10
26秒前
26秒前
27秒前
小赵完成签到,获得积分10
27秒前
li123xxx发布了新的文献求助10
28秒前
汉堡包应助xxx采纳,获得10
28秒前
YOURINZ完成签到,获得积分10
28秒前
李向东发布了新的文献求助10
29秒前
领导范儿应助清新的音响采纳,获得10
29秒前
29秒前
啦啦啦完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366