Deep Learning Models for Time-History Prediction of Vehicle-Induced Bridge Responses: A Comparative Study

计算机科学 桥(图论) 深度学习 人工神经网络 卷积神经网络 人工智能 前馈 循环神经网络 机器学习 控制工程 工程类 医学 内科学
作者
Huile Li,Tianyu Wang,Judy P. Yang,Gang Wu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (01) 被引量:19
标识
DOI:10.1142/s0219455423500049
摘要

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
WCheng完成签到,获得积分10
4秒前
snowman发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
桐桐应助博修采纳,获得10
8秒前
Akim应助阔达丹亦采纳,获得10
8秒前
CipherSage应助xinanan采纳,获得10
9秒前
天天快乐应助mminn采纳,获得10
13秒前
hh完成签到 ,获得积分10
13秒前
ff完成签到 ,获得积分10
15秒前
xinyuwang完成签到,获得积分10
16秒前
17秒前
海鸥应助等待的代容采纳,获得10
17秒前
Yi完成签到 ,获得积分10
17秒前
1111完成签到 ,获得积分10
18秒前
大个应助xinyuwang采纳,获得10
19秒前
wanci应助周先生采纳,获得10
19秒前
20秒前
20秒前
21秒前
阔达丹亦发布了新的文献求助10
22秒前
22秒前
桐桐应助wj采纳,获得200
23秒前
RBT发布了新的文献求助10
25秒前
26秒前
博修发布了新的文献求助10
27秒前
星辰大海应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
28秒前
29秒前
JJJJJin发布了新的文献求助10
30秒前
CWC完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
“animal - derived protein extraction separation”,“animal - derived protein structure identification”,“animal - derived protein activity” 520
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4273633
求助须知:如何正确求助?哪些是违规求助? 3803057
关于积分的说明 11917666
捐赠科研通 3449963
什么是DOI,文献DOI怎么找? 1891935
邀请新用户注册赠送积分活动 942723
科研通“疑难数据库(出版商)”最低求助积分说明 846509