Deep Learning Models for Time-History Prediction of Vehicle-Induced Bridge Responses: A Comparative Study

计算机科学 桥(图论) 深度学习 人工神经网络 卷积神经网络 人工智能 前馈 循环神经网络 机器学习 控制工程 工程类 医学 内科学
作者
Huile Li,Tianyu Wang,Judy P. Yang,Gang Wu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (01) 被引量:16
标识
DOI:10.1142/s0219455423500049
摘要

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓宇完成签到,获得积分10
1秒前
4秒前
怡然念之完成签到,获得积分10
7秒前
10秒前
WSH发布了新的文献求助10
11秒前
11秒前
阔达衬衫完成签到 ,获得积分10
14秒前
成太发布了新的文献求助10
15秒前
希望天下0贩的0应助晓宇采纳,获得10
19秒前
阔达衬衫关注了科研通微信公众号
19秒前
WSH完成签到,获得积分10
21秒前
华仔应助陌路采纳,获得10
22秒前
Cherry发布了新的文献求助10
27秒前
victor完成签到,获得积分10
27秒前
李爱国应助晓宇采纳,获得10
29秒前
31秒前
33秒前
丘比特应助李念采纳,获得30
33秒前
dff发布了新的文献求助10
36秒前
37秒前
wanci应助晓宇采纳,获得10
38秒前
怕黑香菇发布了新的文献求助10
39秒前
美合完成签到 ,获得积分10
42秒前
小高同学发布了新的文献求助10
42秒前
小蘑菇应助晓宇采纳,获得10
46秒前
温暖书文应助六尺巷采纳,获得10
47秒前
鲁卓林完成签到,获得积分10
49秒前
53秒前
Lucas应助晓宇采纳,获得10
55秒前
58秒前
小生不才发布了新的文献求助10
59秒前
59秒前
彭于晏应助科研通管家采纳,获得10
59秒前
59秒前
59秒前
上官若男应助科研通管家采纳,获得10
59秒前
59秒前
在水一方应助科研通管家采纳,获得10
59秒前
小蘑菇应助科研通管家采纳,获得10
1分钟前
冰魂应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778573
求助须知:如何正确求助?哪些是违规求助? 3324177
关于积分的说明 10217311
捐赠科研通 3039383
什么是DOI,文献DOI怎么找? 1668032
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385