亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural-Network-Based Approaches for Optimization of Machining Parameters Using Small Dataset

机械加工 人工神经网络 田口方法 表面粗糙度 反向传播 正交数组 析因实验 计算机科学 实验设计 表面光洁度 分式析因设计 机器学习 机械工程 工程类 统计 数学 材料科学 复合材料
作者
Aleksandar Košarac,Cvijetin Mladjenovic,Milan Zeljković,Slobodan Tabaković,Miloš Knežev
出处
期刊:Materials [MDPI AG]
卷期号:15 (3): 700-700 被引量:51
标识
DOI:10.3390/ma15030700
摘要

Surface quality is one of the most important indicators of the quality of machined parts. The analytical method of defining the arithmetic mean roughness is not applied in practice due to its complexity and empirical models are applied only for certain values of machining parameters. This paper presents the design and development of artificial neural networks (ANNs) for the prediction of the arithmetic mean roughness, which is one of the most common surface roughness parameters. The dataset used for ANN development were obtained experimentally by machining AA7075 aluminum alloy under various machining conditions. With four factors, each having three levels, the full factorial design considers a total of 81 experiments that have to be carried out. Using input factor-level settings and adopting the Taguchi method, the experiments were reduced from 81 runs to 27 runs through an orthogonal design. In this study we aimed to check how reliable the results of artificial neural networks were when obtained based on a small input-output dataset, as in the case of applying the Taguchi methodology of planning a four-factor and three-level experiment, in which 27 trials were conducted. Furthermore, this paper considers the optimization of machining parameters for minimizing surface roughness in machining AA7075 aluminum alloy. The results show that ANNs can be successfully trained with small data and used to predict the arithmetic mean roughness. The best results were achieved by backpropagation multilayer feedforward neural networks using the BR algorithm for training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
共享精神应助Harrison采纳,获得10
13秒前
轻松凌柏发布了新的文献求助10
13秒前
33秒前
852应助koubi采纳,获得10
36秒前
38秒前
善学以致用应助Harrison采纳,获得10
56秒前
浮游应助mmm采纳,获得10
1分钟前
1分钟前
koubi发布了新的文献求助10
1分钟前
打打应助ZoyaR采纳,获得10
1分钟前
1分钟前
koubi完成签到,获得积分10
1分钟前
1分钟前
ZoyaR发布了新的文献求助10
1分钟前
1分钟前
mmm完成签到,获得积分10
1分钟前
2分钟前
ZoyaR完成签到,获得积分10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
研友_R2D2发布了新的文献求助10
2分钟前
2分钟前
2分钟前
清风朗月发布了新的文献求助10
2分钟前
2分钟前
2分钟前
斯文败类应助清风朗月采纳,获得10
2分钟前
Harrison发布了新的文献求助10
2分钟前
李爱国应助轻松凌柏采纳,获得10
3分钟前
3分钟前
俏皮的钻石完成签到 ,获得积分10
3分钟前
轻松凌柏完成签到 ,获得积分10
3分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
yeah完成签到 ,获得积分10
5分钟前
5分钟前
田様应助whz采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553