CNN based sub-pixel mapping for hyperspectral images

高光谱成像 端元 计算机科学 像素 人工智能 模式识别(心理学) 趋同(经济学) 编码器 反褶积 基本事实 算法 经济增长 操作系统 经济
作者
P. V. Arun,Krishna Mohan Buddhiraju,Alok Porwal
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:311: 51-64 被引量:47
标识
DOI:10.1016/j.neucom.2018.05.051
摘要

Sub-pixel mapping techniques predict the spatial distribution of endmember abundances which are estimated through spectral unmixing. The sub-pixel mapping and spectral unmixing approaches are mostly unsupervised, and both are generally treated as independent optimization problems. This study explores convolutional encoder–decoder as well as recurrent and deconvolution networks for jointly optimizing the unmixing and mapping stages in a supervised manner. In the proposed approach, finer scale classified maps are used for training the network, thereby avoiding the requirement of fractional abundance ground truths. It is observed that the class compatibility based loss minimization yields better convergence and accuracy when compared to the conventional mean squared error (MSE) or cross entropy based approaches. An ensemble of the proposed framework is devised so as to avoid the possible convergence of stochastic gradient minimization towards local optima. The proposed approaches are evaluated using simulated and standard hyperspectral datasets. Experiments indicate that the joint optimization of spectral unmixing and sub-pixel mapping stages improves the accuracy as well as the convergence time. Also, the proposed LSTM approach gives better results, especially for linear mixtures, in comparison with the encoder–decoder based approaches. Although the LSTM approach is relatively less sensitive to the network parameters, the size and number of filters need to be tuned considering the required trade-off between accuracy and running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xaq发布了新的文献求助10
2秒前
zz关闭了zz文献求助
4秒前
4秒前
4秒前
nnnn完成签到,获得积分10
5秒前
ysy发布了新的文献求助10
5秒前
5秒前
斑比发布了新的文献求助10
6秒前
7秒前
黎明完成签到,获得积分10
7秒前
菠菜应助xiaoyu123采纳,获得200
8秒前
8秒前
SciGPT应助周娅敏采纳,获得10
9秒前
wuyy完成签到,获得积分20
9秒前
zzc完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
愉快盼曼发布了新的文献求助10
12秒前
科研通AI5应助北木黎采纳,获得10
13秒前
欢呼宛秋发布了新的文献求助10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
梅玄发布了新的文献求助10
16秒前
Stata@R完成签到,获得积分10
16秒前
16秒前
roy_chiang完成签到,获得积分10
16秒前
17秒前
ZZZ发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4467270
求助须知:如何正确求助?哪些是违规求助? 3928664
关于积分的说明 12190689
捐赠科研通 3581996
什么是DOI,文献DOI怎么找? 1968478
邀请新用户注册赠送积分活动 1006855
科研通“疑难数据库(出版商)”最低求助积分说明 900935