已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Crypto-ransomware early detection model using novel incremental bagging with enhanced semi-random subspace selection

计算机科学 勒索软件 子空间拓扑 加密 恶意软件 数据挖掘 随机森林 钥匙(锁) 选择(遗传算法) 机器学习 人工智能 计算机安全
作者
Bander Ali Saleh Al‐rimy,Mohd Aizaini Maarof,Syed Zainudeen Mohd Shaid
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:101: 476-491 被引量:71
标识
DOI:10.1016/j.future.2019.06.005
摘要

The irreversible effect is what characterizes crypto-ransomware and distinguishes it from traditional malware. That is, even after neutralizing the attack, the targeted files remain encrypted and cannot be accessed without the decryption key. Thus, it is imperative to detect such a threat early, i.e. in the initial phases before the encryption takes place. However, the lack of sufficient information in initial phases of the attack is the main challenge to early detection, leading to low detection accuracy and a high rate of false alarms. This is due to the way that the existing solutions have been designed based on, which assumes the availability of complete information about the behavior of such attacks at detection time. Nevertheless, this does not hold for early detection that takes place while the attack is underway, and data are not fully available. To address such limitations, this paper proposes two novel techniques; incremental bagging (iBagging) and enhanced semi-random subspace selection (ESRS), and incorporates them into an ensemble-based detection model. The proposed iBagging was firstly used to build incremental subsets in a way that reflects the progression of crypto-ransomware behavior during its different attack phases. ESRS was then used to build optimal, noise-free and diverse features subspaces, by which, a pool of classifiers was trained. Finally, a grid search was employed to select the best combination of base classifiers. Majority voting was utilized for the final decision. The experimental evaluation of the proposed techniques and model was conducted and compared with the existing crypto-ransomware early detection solutions. The results demonstrate that the proposed techniques and model overcame the data limitation in the early phases of the attacks and achieved higher detection accuracy than existing solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱熊猫完成签到 ,获得积分10
2秒前
3秒前
科研通AI6.1应助46552采纳,获得10
4秒前
wang完成签到 ,获得积分10
5秒前
草莓熊1215完成签到 ,获得积分10
7秒前
齐济完成签到 ,获得积分10
9秒前
9秒前
等待寄云完成签到 ,获得积分10
10秒前
阿靖完成签到 ,获得积分10
12秒前
江佳颖完成签到 ,获得积分10
15秒前
齐桉完成签到 ,获得积分10
17秒前
ceeray23发布了新的文献求助20
19秒前
善学以致用应助还在拉扯采纳,获得10
21秒前
汉堡包应助还在拉扯采纳,获得10
21秒前
好吃的番茄芝士完成签到 ,获得积分10
21秒前
Cooper应助科研通管家采纳,获得10
22秒前
Cooper应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
22秒前
ora4ks发布了新的文献求助10
23秒前
kbcbwb2002完成签到,获得积分0
25秒前
149865完成签到,获得积分10
31秒前
山野完成签到 ,获得积分10
31秒前
优pp完成签到 ,获得积分10
33秒前
学霸宇大王完成签到 ,获得积分10
36秒前
SCI信手拈来完成签到,获得积分10
36秒前
xyc完成签到 ,获得积分10
37秒前
包破茧完成签到,获得积分10
37秒前
郴欧尼完成签到 ,获得积分10
41秒前
42秒前
peterwang35完成签到 ,获得积分10
42秒前
江佳颖发布了新的文献求助30
45秒前
46秒前
火星仙人掌完成签到 ,获得积分10
48秒前
ora4ks完成签到,获得积分10
52秒前
奋斗朋友完成签到 ,获得积分10
52秒前
乔修亚发布了新的文献求助10
52秒前
大帅比完成签到 ,获得积分10
52秒前
坚强的玉米完成签到 ,获得积分10
53秒前
kenti2023完成签到 ,获得积分10
53秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849418
求助须知:如何正确求助?哪些是违规求助? 6248439
关于积分的说明 15624323
捐赠科研通 4965860
什么是DOI,文献DOI怎么找? 2677637
邀请新用户注册赠送积分活动 1621934
关于科研通互助平台的介绍 1578009