Knowledge-based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT

人工智能 计算机科学 深度学习 水准点(测量) 全国肺筛查试验 肺癌 肺癌筛查 加权 结核(地质) 体素 放射科 模式识别(心理学) 医学 计算机断层摄影术 病理 生物 内科学 古生物学 地理 大地测量学
作者
Yutong Xie,Yong Xia,Jianpeng Zhang,Yang Song,Dagan Feng,Michael Fulham,Weidong Cai
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (4): 991-1004 被引量:413
标识
DOI:10.1109/tmi.2018.2876510
摘要

The accurate identification of malignant lung nodules on chest CT is critical for the early detection of lung cancer, which also offers patients the best chance of cure. Deep learning methods have recently been successfully introduced to computer vision problems, although substantial challenges remain in the detection of malignant nodules due to the lack of large training data sets. In this paper, we propose a multi-view knowledge-based collaborative (MV-KBC) deep model to separate malignant from benign nodules using limited chest CT data. Our model learns 3-D lung nodule characteristics by decomposing a 3-D nodule into nine fixed views. For each view, we construct a knowledge-based collaborative (KBC) submodel, where three types of image patches are designed to fine-tune three pre-trained ResNet-50 networks that characterize the nodules' overall appearance, voxel, and shape heterogeneity, respectively. We jointly use the nine KBC submodels to classify lung nodules with an adaptive weighting scheme learned during the error back propagation, which enables the MV-KBC model to be trained in an end-to-end manner. The penalty loss function is used for better reduction of the false negative rate with a minimal effect on the overall performance of the MV-KBC model. We tested our method on the benchmark LIDC-IDRI data set and compared it to the five state-of-the-art classification approaches. Our results show that the MV-KBC model achieved an accuracy of 91.60% for lung nodule classification with an AUC of 95.70%. These results are markedly superior to the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小飞侠完成签到,获得积分10
1秒前
斯文败类应助狐狸兔采纳,获得10
3秒前
研友_8RyzBZ发布了新的文献求助10
3秒前
彭于晏应助专注草莓采纳,获得10
3秒前
爱听歌的白开水完成签到 ,获得积分20
3秒前
4秒前
wd完成签到,获得积分10
4秒前
5秒前
第八维完成签到,获得积分10
6秒前
HSA完成签到,获得积分10
7秒前
单薄怜寒发布了新的文献求助10
7秒前
7秒前
第八维发布了新的文献求助10
9秒前
越瑟淳潔完成签到 ,获得积分10
9秒前
思源应助巴扎嘿采纳,获得10
10秒前
noobmaster发布了新的文献求助10
11秒前
坦率尔蝶完成签到 ,获得积分10
12秒前
12秒前
13秒前
NexusExplorer应助韦巧采纳,获得10
13秒前
CAOHOU应助开放飞阳采纳,获得10
13秒前
大模型应助Crush采纳,获得10
13秒前
14秒前
kilig发布了新的文献求助10
15秒前
传奇3应助第八维采纳,获得10
15秒前
18秒前
YYYY完成签到,获得积分10
18秒前
干净山彤发布了新的文献求助20
18秒前
木之尹发布了新的文献求助10
19秒前
所所应助xuxuxu采纳,获得10
19秒前
faa发布了新的文献求助10
20秒前
21秒前
liang发布了新的文献求助10
21秒前
山鬼吹灯完成签到,获得积分10
21秒前
周周发布了新的文献求助10
21秒前
专注草莓完成签到,获得积分10
21秒前
旋律完成签到,获得积分10
22秒前
起风了发布了新的文献求助10
23秒前
科小余发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4003541
求助须知:如何正确求助?哪些是违规求助? 3542967
关于积分的说明 11285869
捐赠科研通 3280028
什么是DOI,文献DOI怎么找? 1808826
邀请新用户注册赠送积分活动 885009
科研通“疑难数据库(出版商)”最低求助积分说明 810568